

THE

ELECTRONIC
TABLA

By
Ajay Kapur

A thesis submitted in partial fulfillment of the
requirements for the degree of

Computer Science B.S.E.

Princeton University

May 6th, 2002

Princeton University

THE ELECTRONIC TABLA

By Ajay Kapur

I pledge my honor I did not violate the Honor Code in writing my senior thesis.

Thesis Advisor: Perry R. Cook
Department of Computer Science and Music

Second Reader: Ben Shedd
Department of Computer Science

Thesis Instructor: Randy Wang
Department of Computer Science

THE ELECTRONIC TABLA

Abstract

This paper describes the design of an Electronic Tabla controller. The
Electronic Tabla (ETabla) triggers both sound and graphics simultaneously. It
allows for a variety of traditional Tabla strokes and new performance techniques.
Graphical feedback allows for artistical display and pedagogical feedback. This
paper will describe the background of the Tabla, explain key concepts of digital
signal processing and electronic music, and outline in detail the process of
creating the Electronic Tabla.

Table of Contents

C H A P T E R 1
I N T R O D U C T I O N

Introduction 1

Project Description 2

Project Goals 2

Project Overview 3

The ETabla Team 3

C H A P T E R 2
T H E T A B L A

Evolution of the Tabla with Technology 4

Traditional Tabla Strokes 5

Traditional use of the Tabla in Indian Music 8

C H A P T E R 3
T H E T E C H N O L O G Y

Musical Controller 11

Force Sensing Resistors 12

Basic Stamp 13

MIDI 15

C H A P T E R 4
T H E M I D I T A B L A C O N T R O L L E R

November 29th, 2001 17

December 15th, 2001 20

January 15th, 2002 21

March 7th, 2002 25

March 23rd, 2002 27

April 3rd, 2002 28

April 6th, 2002 30

April 23rd, 2002 30

C H A P T E R 5
S O U N D A N A L Y S I S O F T H E T A B L A

What is Modal Analysis 32

C.V. Raman’s Tabla Sound Analysis 34

Modal Analysis using MATLAB 35

Sound Analysis Conclusion 53

C H A P T E R 6
T A B L A S O U N D S I M U L A T I O N

MATLAB Simulated Sound 54

Physical Model using STK Toolkit 56

C H A P T E R 7
G R A P H I C A L F E E D B A C K

The Visual System 59

The Controls 61

C H A P T E R 8
M U S I C C R E A T E D W I T H T H E
E T A B L A

Thesis Performance 62

C H A P T E R 9
O T H E R P R O J E C T S U S I N G T H E
E T A B L A

New Instrument Designs Schematics 63

C H A P T E R 1 0
C O N C L U S I O N

Concluding Thoughts 68

A P P E N D I X A
E X P E R I M E N T S W I T H F O R C E
S E N S I N G R E S I S T O R S

Experiments on Measuring Position Using an FSR 69

Experiments on Measuring Force Using an FSR 71

A P P E N D I X B
P B A S I C C O D E

Bayan2HS.bs2 76

Dahina2HS.bs2 79

Bayan2HS.bsx 83

Dahina2HS.bsx 86

Bayan2STK.bsx 90

Dahina2STK.bsx 93

A P P E N D I X C
M A T L A B C O D E U S E D F O R S O U N D
A N A L Y S I S

myFFT.m 98

Spectrogram1.m 99

Spectrogram2.m 100

Spectrogram3.m 103

hillClimbing.m 105

Spectrogram4.m 106

sixpeaks.m 108

Spectrogram5.m 110

peaks.m 113

A P P E N D I X D
M A T L A B C O D E U S E D F O R S O U N D
S I M U L A T I O N

BayanSimulator2.m 115

CoeficientFinder.m 118

BayanSimulator3.m 118

BayanSimulator.m 120

A P P E N D I X E
T H E S I S C O N C E R T P R O G R A M
N O T E S

Opening Notes 124

Program Notes 126

Biographies 129

Lyrics 132

References 135

Acknowledgments

I would first like to thank my mentor, Professor Perry Cook, who
introduced me to the field of Electronic Music, and showed me how to
integrate my two passions (computers science and music) together into one.
I would also like to thank Philip Davidson designing the graphic feedback
system for the ETabla, and Georg Essl for designing the physical model for
this project. Many thanks to Tae Hong Park who explained the details of the
Fast Fourier Transform over and over again. Special thanks to Brad
Alexander for helping design custom wood pieces for the ETabla. Special
thanks to my aunt in Bombay, Asha Vohra, who organized the purchase of
four sets of Tablas.

This project would have been impossible without Guru Rakesh

Kumar Parihast and Manjul Bhargava, who both tutored me in traditional
Tabla theory. I would also like to thank all the artists who participated in
the world premiere concert of the ETabla.

Many thanks to all those who helped fund this project including:

Chair Professor Scott Burnham of the Music Department, Chair David
Dopkin of the Computer Science Department, Dean Peter Bogucki of the
Engineering School, President Harold T. Shapiro, President Shirley M.
Tilghman, Vice President of Student Life Janet S. Dickerson, Professor Perry
Cook, and my parents.

I would also like to thank Stuart Rosse for encouraging me to pursue

my musical inclinations and endeavors, making my “duty my desire”. I
would like to thank my two roommates Adam Nemett and David Hittson
for coming to my rescue through out this year. A special thanks to my
sister, Asha Kapur, for listening as I shared my excitement, conflicts and
frustrations. Finally, a loving thanks to my parents, Arun and Meera Kapur,
who’s upbringing allowed me to stretch myself to follow through on my
dreams.

1111

Introduction
Overview of the Electronic Tabla Project

ablas are a pair of hand drums traditionally used to accompany
North Indian vocal and instrumental music. The silver, larger
drum (shown in Figure 1.1) is known as the Bayan. The smaller

wooden drum is known as the Dahina.1 The pitch can be tuned by
manipulating the tension on the pudi (drumhead). The Bayan is tuned by
adjusting the tightness of the top rim. The Dahina can be tuned similarly,
as well as by adjusting the position of the cylindrical wooden pieces on
the body of the drum. Tabla is unique because the drumheads have
weights at the center made of a paste of iron oxide, charcoal, starch, and
gum (round, black spots shown in the Figure 1.1).2 Also, the Tabla makes
a myriad of different sounds by the many different ways it is stroked.
These strokes follow a
tradition which has been
passed on from generation to
generation, from guru
(teacher, master) to shikshak
(student) in the country of
India. The combination of the
“weighting” of the drum-
head, and the variety of
strokes by which the Tabla
can be played, gives the
drum a complexity that
makes it a challenging
controller to create, as well as
a challenging sound to
simulate.

Chapter

1

T

Figure 1.1 Picture showing North Indian Tabla. The
Bayan is the silver drum on the left. The Dahina is

the wooden drum on the right.

2222

Project Description

The purpose of this project is to use technology to create a real-time
instrument that models the Tabla. This Electronic Tabla (known as the
ETabla) has digitizing sensors, custom positioned to traditional Tabla
technique, which converts finger strikes and hand slaps to binary code
which computers can understand. These signals are then used to trigger
real-time sound and graphics.

Project Goals

The motivations and goals for creating the Electronic Tabla are to:

1. Develop a controller which can simulate traditional North
Indian Tabla strokes

2. Facilitate the fusion between North Indian Classical Music
and modern electronic music

3. Expedite the learning process for beginner Tabla players by
easing the execution of basic Tabla sounds and rhythms

4. Widen the number of sounds available within the repertoire
of expert Tabla players

5. Make it easier to tune the Tabla to the desired pitch
6. Create audio and visual experiences that express the feelings

of the performer and enamors the audience
7. Increase the popularity of the North Indian Drum

3333

Project Overview
In this report, I will present:

• An overview of the Tabla, including its evolution with
technology, and how it is traditionally played.

• An overview of the technology used to create the
Electronic Tabla controller

• The creation process and details of the MIDI Tabla
Controller

• The sound analysis of the traditional Tabla

• The various models used to simulate the sound of the
Tabla

• The creation and explanation of the graphic feedback
system

• The concert which introduces the Electronic Tabla to
the campus

• Other applications of the technology used to produce
the Electronic Tabla

The ETabla Team

The Electronic Tabla team consists of five key players who
have helped make the instrument a success. Professor Perry Cook of
the Computer Science and Music department has brought his past
experience of making electronic instruments. Philip Davidson, who
is an undergraduate student in the Computer Science program, has
brought his expertise in creating real-time graphic feedback. Georg
Essl, a PhD Computer Science student has brought his knowledge in
physically modeling different sounds. Brad Alexander is a millwork
foreman at County Cabinet Shop, Inc., and helped design custom
wood pieces for our project. I, Ajay Kapur, am a musician getting a
degree in Computer Science, who has led and coordinated all these
talents together to create the Electronic Tabla as my senior thesis
project.

4444

The Tabla
Origin, Evolution, & Tradition

Evolution of the Tabla with Technology

There are a few accounts for the origin of the Tabla. A mythological
account reads:

“Once, a long time ago, during the transitional period between two Ages… people took to
uncivilized ways … ruled by lust and greed [as they] behaved in angry and jealous ways,
[while] demons, [and] evil spirits… swarmed the earth. Seeing this plight, Indra (The
Hindu God of thunder and storms) and other Gods approached God Brahma (God of
creation) and requested him to give the people a Krindaniyaka (toy) … which could not
only be seen, but heard, … [to create] a diversion, so that people would give up their bad
ways.”1

One of the Krindaniyakas, which Brahma gave to humans was the Tabla.
Other legends state that the Tabla was created in the 18th Century by

Sidhar Khan Dhari, a
famous Pakhawaj player.
Pakhawaj is a genre of
Indian drum defined by a
barrel with drumheads on
either side. The Mrindangam,
shown in Figure 2.1, is one
drum in this family of
drums. It was said that
Sidhar Khan provoked an
angry dispute after losing a
music contest and his

Chapter

2

Figure 2.1 Picture showing a Mridangam, a drum of the
Pakhawaj family.

5555

Pakhawaj was chopped in half by a sword. Thus, the first Tabla was
created accidentally.3

Some Tablas were created out of clay, others out of wood. As
technology for producing metal alloys evolved, the Bayan started to be
molded out of brass and steel.4

As the popularity of the Tabla spread to the western hemisphere,
nearly coincident with emergence of the personal computer, scientists
began to combine the Tabla with computers. In 1992, James Kippen
created software which allowed a user to input a traditional Tabla
rhythmic pattern, which the computer would then use to synthesize an
improvised pattern that followed traditional rules for variation.5 In 1998,
Mathew Wright and David Wessel of University of California Berkeley,
aimed to achieve a similar goal, with a real time interface and unique data
structure. They successfully created software that generated “free and
unconstrained” music material, which could fit into a given traditional
rhythmic structure.6 Meanwhile, Talvin Singh created a direct input from
his Tabla to computer effects, achieving sound manipulations in an
invention he calls “Tablatronics”. 7 8

Now, our team has created a Tabla controller that is modeled to the
playing style of North Indian classical traditions, and which outputs
computer-generated sound and graphics.

Traditional Tabla Strokes

It is important to understand the traditional playing style of the
Tabla to see how our controller models its hand movement. Below, in
Figure 2.2, is a picture explaining the names of the different parts of the
Tabla pudi (drum head).

Figure 2.2 Picture showing parts of the Tabla pudi.

6666

Bayan Strokes

There are two basic strokes played on the Bayan. The Ka stroke is
executed by slapping the flat left hand down on the Bayan as shown in
Figure 2.3 (a). Notice the tips of the fingers extend from the maidan
through to the chat and over the edge of the drum. The slapping hand
remains on the drum after it is struck to kill all resonance, before it is
released away. The Ga stroke, shown in Figure 2.3 (b), is executed by
striking the maidan directly above the syahi with the middle and index
fingers of the left hand. When the fingers strike, they immediately release
away from the drum, to let the Bayan resonate with sound. The heel of the
left hand controls the pitch of the Ga stroke, as shown in Figure 2.3 (c). It
controls the pitch at the attack of the stroke, and can also bend the pitch
while the drum is resonating. Pitch is controlled by two variables of the
heel of the hand: force on to the pudi, and the position on the pudi from the
edge of the maidan and syahi to the center of the syahi. The greater the force
on the pudi, the higher the pitch. The closer to the center of the syahi, the
higher the pitch. 1

Dahina Strokes

There are six basic strokes played on the Dahina. The Na stroke,

shown in Figure 2.4 (a), is executed by lightly pressing down the pinky
finger of the right hand between the chat and the maidan, and lightly
pressing the ring finger down between the syahi and the maidan, in order to
mute the sound of the drum. Then one strikes the chat with the index finger
and quickly releases it so the sound of the drum resonates. The Ta stroke is
executed by striking the index finger of the right hand at the center of the

(a) (b) (c)
Figure 2.3 Pictures showing traditional strokes played on Bayan

7777

syahi, as shown in Figure 2.4 (b). The finger is held there before release so
there is no resonance, creating a damped sound. The Ti stroke, shown in
Figure 2.4 (c), is similar to Ta except the middle and ring finger of the right
hand strike the center of the syahi. This stroke does not resonate and creates
a damped sound.

The Tu stroke is executed by striking the maidan with the index

finger of the right hand and quickly releasing, as shown in Figure 2.5 (a).
This stroke resonates the most because the pinky and ring fingers are not
muting the pudi.1 The Tit stroke, shown in Figure 2.5 (b), is executed similar
to Na, by lightly pressing the pinky finger of the right hand down between
the chat and the maidan, and lightly pressing the ring finger down between
the syahi and the maidan. The index finger now strikes the chat, quickly
releasing to let it resonate. The index finger strike on the chat is further
away from the pinky and ring finger than it is on the Na stroke. Tira is a
combination of two strokes on the Dahina, which explains the two syllables
of the stroke. This stroke is shown in Figure 2.5 (c) and Figure 2.5 (d). It is
executed by shifting the entire right hand from one side of the drum to the
other. It creates a damped sound at each strike.9

Figure 2.4 Picture showing Na, Ta, & Ti strokes played on the Dahina.

(a) (b) (c)

(a) (b) (c) (d)

Figure 2.5 Picture showing Tu, Tit, & Tira strokes played on
the Dahina.

8888

Combination Strokes

 Specific names are given to strokes that are produced by both
hands simultaneously on the Dahina and Bayan. Dha refers to a Ga stroke
combined with a Na stroke. Dhin refers to a Ga stroke combined with a
resonating Ta stroke.1 Tin refers to a Ka stroke combined with a Na stroke.9

Traditional use of the Tabla in Indian Music

Music is a central component of many functions throughout India,
such as birth, engagements, weddings, and funerals. Indian Music consists
of four main styles: folk, tribal, pop, and classical. The Tabla is used in all
of these forms of music. Indian folk and tribal music are both played in
villages all around India. Cheaper versions of Tablas are created out of
commonly available materials.10 Music created for films is the most
popular in India, similar to music in America which is broadcasted on the
“top 40” and “MTV”. The Tabla is used in a myriad of songs for these
three-hour films which are similar to American musicals. There are two
systems of Indian classical music: Hindusthani music from the North, and
Carnatic music for the south. The Tabla outlines the rhythmic structure in
Hindusthani music, while the mridangam, shown in Figure 2.1, outlines
the rhythmic structure of Carnatic music.11 12

Hindustani Tabla Theory

 Musical enhancement is the major role of the Tabla in North Indian
classical music. Theka, which literally means “support”, is the Indian word
for simple accompaniment performed by a Tabla player. The importance
of the theka underscores the role of the Tabla player as timekeeper. An
even more specific definition of theka is the conventionally accepted
pattern of bols which define a tal. The word tal literally means clap, for the
clapping of hands is one of the oldest forms of rhythmic accompaniment.1

The most fundamental unit of this rhythmic system is the matra,
which translates to “beat”. In many cases the matra is just a single stroke.
Just as sixteenth, or eighth notes maybe strung together to make a single
beat, so too may several strokes of Tabla be strung together to have the
value of one matra. The next higher level of structure is vibhag, which

9999

translates to “measure” or “bar”. These measures may be as short as one
beat or longer than five. Usually, however, there are two, three, or four
matras in length. These vibhags are described in waves or claps. A vibhag
which is signified by a clap of the hands is said to be bhari or tali.
Conversely, a vibhag which is signified by a wave of the hand is said to be
khali.1

In the common tal known as Tin Taal (which translates to “three
claps”), there are 16 matras, divided into four vibhags. Its clapping
arrangement is arranged:

Clap, 2, 3, 4,

Clap, 2, 3, 4,

Wave, 2, 3, 4,

Clap, 2, 3, 4,

 The third line is a khali vibhag, where as the other three lines are bhari
vibhags.

 In performance, the cycle of sixteen beats is repeated over and over
again. This cycle, known as avartan, refers to the highest level of
conceptual rhythmic structure. The repetition of the cycle gives special
significance to the first beat. This beat, known as sam, is a point of
convergence between the Tabla player and the other musicians. Whenever
a cadence is indicated it will usually end on the sam. This means that the
sam may be thought of as both the beginning of some structures as well as
the ending of others.1

 The mnemonic syllables, known as bol, represent the various
strokes of the Tabla, which are described earlier in this chapter. The cycle
of 16 bols that create Tin Taal is written below:

Dha, Dhin, Dhin, Dha

Dha, Dhin, Dhin, Dha

Dha, Tin, Tin, Ta

Ta, Dhin, Dhin, Dha 13

10101010

Bols are useful for two reasons; First, the bol allows the musician to
remember complicated fixed compositions. Second, the musician uses the
bol to create the mental permutations of a theka into an improvised
passage.

 If a musician were to play a basic unadorned theka, it would be
excruciatingly dull. Advanced Tabla players improvise with dynamics,
modulation, and ornamentation to add beauty and life to the theka.
Adding different embellishments and variations to the music is a concept
defined as prakar.1

 These concepts and techniques of traditional Hindustani music are
considered in some compositions using the ETabla discussed in Chapter 8,
as well as the design of the ETabla discussed in Chapter 4.

11111111

The Technology
Force Sensing Resistors, Basic Stamp, & MIDI

Music Controller

This chapter describes the technology used to create a musical
controller. A controller is a device made of different sensors which
measure human interaction and convert instances into the digital realm. A
mouse is a controller which uses an infrared LED and sensor to convert
hand movement into x and y coordinates on a computer screen.14 A
musical controller takes input from a musician, such as rhythm and pitch,
to trigger recorded or physically modeled sound using a computer. This
process is displayed in Figure 3.1. The ETabla is primarily concerned with
capturing rhythmic impulse from the performers finger taps, as well as
pitch and type of stroke.

Chapter

3

Figure 3.1 Picture showing process of Musical Controller

12121212

Force Sensing Resistors

Force sensing resistors (FSRs) are used to digitize the taps of the
performer. FSRs are manufactured by Interlink Electronics and can be
purchased at their online store.15 These sensors use the electrical property
of resistance to measure the force (or pressure) exerted by a user. They
essentially are force to resistance transducers. The more pressure exerted,
the lower the resistance drops. FSRs are made of two main parts: a
resistive material applied to a piece of film, and a set of digitizing contacts
applied to another film. This configuration is shown in Figure 3.2. The
resistive material creates an electrical path between a set of two
conductors. When force is applied, conductivity increases as the
connection between the conductors is improved.16 Experiments with FSRs,
explained in detail in Appendix A, show that conductivity is a linear
function of force.

The ETabla uses three types of
FSRs. Square FSRs, shown in Figure 3.3
(a), and small FSRs, shown in Figure 3.3
(b), measure only force. Long FSRs,
shown in Figure 3.3 (c), measure force as
well as position on the vertical axis. Force
measurements will be used to control
velocity (volume). Position measurements
will be used to control pitch and
resonance of different finger strikes. Look
at Appendix A for more details on FSRs.

Figure 3.2 Diagram showing configuration of Force
Sensing Resistors16

 (a) (b) (c)
Figure 3.3 Pictures of the three types

of FSRs used to create ETabla

13131313

Basic Stamp

The Basic Stamp is a programmable micro controller, developed by
Parallax, Inc. There are currently five types of BASIC Stamps: BASIC
Stamp I, BASIC Stamp II, BASIC Stamp IIe, BASIC Stamp IIsx, and BASIC
Stamp IIp. The ETabla was first developed using the BASIC Stamp II
(Shown in Figure 3.4 (a)), and then upgraded to the BASIC Stamp IIsx
(Shown in Figure 3.4(b)), which has a faster processing speed.

 The ETabla uses the BASIC Stamp II Carrier Board, which can
accommodate the BASIC Stamp II, and the BASIC Stamp IIsx. FSRs, LEDs,
resistors, capacitors, and other gizmos are wired together onto this carrier
board. Detailed design schematics and circuitry of the ETabla will be
discussed in Chapter 4.

 The BASIC Stamp is programmed by software provided by
Parallax, for Windows. The programming language is PBASIC (Parallax
BASIC) which is based off the BASIC programming language. There are
several versions of PBASIC. The ETabla used versions PBASIC2 and
PBASIC2sx for programming the BASIC Stamp II and BASIC Stamp IIsx
respectively.

Code is transferred from the computer to the powered BASIC
Stamp via a serial port on the carrier board. The code is stored in the
EEPROM memory after being tokenized. Programming elements, such as
constants, comments, and variable names, are not stored in the BASIC
Stamp, so descriptive names and comments are included in PBASIC code
for the ETabla.

(a) (b)
Figure 3.4 Pictures showing BASIC Stamp II and BASIC Stamp

IIsx 17

14141414

The BASIC Stamp II only has room for about 500 lines of code,
executed at 4000 instructions per second, whereas the BASIC Stamp IIsx
has room for 4000 lines of code, executed at 10,000 instructions per second.
Thus the BASIC Stamp IIsx executes 2.5 times as fast to time sensitive
commands. This is why an upgrade was made.17

Pin Descriptions:

PIN NAME DESCRIPTION

1 SOUT Serial Output

2 SIN Serial Input

3 ATN Attention

4 VSS System Ground

5-20 P0-P15 General Purpose I/O

21 VDD 5 volt Input/Output

22 RES Reset

23 VSS System Ground

24 VIN Unregulated Power

Both the BASIC Stamp II and the BASIC Stamp IIsx have 16 I/O
pins, and two dedicated serial port pins. The serial input is the SIN pin
and the serial output is the SOUT pin. (Shown in Table 3.1)

The BASIC Stamp runs on 5 to 15 volts DC. It has a feature of a 5-
volt regulator, which converts input from 6 to 15 volts (at the VIN pin)
down to 5 volts to run the components. +5 volts are available to use on the
VDD pin. The VSS pin is the ground pin. The ETabla uses a 9-volt battery
for power which is directly connected to the VIN and VSS pins.

The RES pin is the internal reset pin, which is normally high (+5
volts) when BASIC Stamp is running its program. It turns low, when
power supply drops below 4 volts, to sleep the BASIC Stamp safely. When
re-powered, the BASIC Stamp starts at the first of its stored program. The
ATN pin has an inverse relationship with the RES pin. It normally is low

Table 3.1 Table describing pins of the BASIC Stamp II and BASIC Stamp IIsx 17

15151515

when the RES pin is high, and the BASIC Stamp is running properly.
When the ATN pin is driven high, it forces the RES low, putting the
BASIC Stamp to sleep safely.17

Memory:

 The BASIC Stamp II has 2048 bytes of program storage, while the
BASIC Stamp IIsx, have 16,384 bytes, separated into 8 pages of 2048 bytes.
Each command written in PBASIC takes a variable amount of space. Most
commands take 2 to 4 bytes of memory space. Tens of bytes or more are
taken up by commands such as SERIN, SEROUT, LOOKUP and
LOOKDOWN, which have many arguments. While editing code on a
Windows machine, CTRL-M shows a memory map of how space in the
EEPROM is used.17

MIDI

MIDI is short for Musical Instrument Digital Interface. It is a
communication protocol, which allows electronic instruments (such as
keyboards, synthesizers, and the ETabla) to connect and interact with each
other. Thus taps on the ETabla controller can trigger sounds on a
keyboard remotely. In this case, the ETabla would take information about
a musical note, such as pitch, volume, start time, stop time, and convert it
to MIDI. The protocol would then be sent out to a keyboard which has a
changeable bank of sounds, and the MIDI information is opened to create
a noise in real-time. This allows one controller to generate the sounds of
hundreds of instruments! 18

Starting in 1983, MIDI was developed in cooperation with the
major electronic instrument companies such as Roland, Yamaha, and
Korg. The companies created a standard interface, to try to generate more
sales. Since than, the protocol has evolved to fit the needs of professional
musicians, as larger amounts of controllers and sounds were created.

16161616

MIDI is transmitted at 31,250 bits per second. Each message has one
start bit, eight data bits, and one end bit, which means the maximum
transmission rate would be 3215 bytes per second. When the first bit is set
to 1, the byte is a status byte. Status byte denotes MIDI commands such as
NOTE ON, NOTE OFF, and CONTROL CHANGE, and communicates
which channel (0-15) to send information. The status byte also determines
the length of the message, which are generally one, two, or three bytes in
length. An example of a common message is illustrated below:

10010000 00111100 01000000

Note On / Channel 0 Note #60 Velocity = 64

The NOTE ON command will trigger a MIDI device to turn on a sound.
The pitch byte will tell the device to play Note 60, which is middle C on a
piano sound bank. The velocity byte will tell the device how loud to play
the note.19

On a standard MIDI device there are three five-pin ports (IN, OUT,
THRU) that transmit and receive MIDI information. The IN port receives
and processes MIDI commands, while the OUT transmits it. The THRU
port, receives and processes MIDI information and transmits the same
message through the OUT port.18 The ETabla’s BASIC Stamp converts
taps on the force sensing resistors to MIDI protocol which is sent through
a MIDI OUT port. Specific MIDI messages that are triggered will be
discussed in the detailed design schematic in Chapter 4.

17171717

The MIDI Tabla Controller
Chronological Design Schematics

his chapter describes a detailed design schematic for the ETabla.
The chapter is organized by time, showing progress at key
milestones of accomplishment. Thus, it outlines the process of

creating the MIDI Tabla controller. There are two controllers which make
up the ETabla: EDahina and EBayan. Each section will describe the
progress for both of these controllers.

November 29th, 2001

EBayan 1.0:

The EBayan was born on a piece of wood. Chapter 2 explained how

the Bayan has two main strokes: Ga and Ka. The left hand’s middle and
index finger tap out Ga strokes, while the heel of the hand changes the
pitch by force and position. Chapter 3 explained how square FSRs
measure force, and how long FSRs measure force and position. Thus, we
used one square FSR and one
long FSR to try and simulate
the Ga stroke, as shown in
Figure 4.1 (a). Figure 4.1 (b)
shows how these FSRs were
positioned on a slab of wood,
as the beginning of the
EBayan design. The square
FSR measures velocity of the
middle and index finger

Chapter

4

T

(a) (b)
Figure 4.1 Pictures showing EBayan’s birth on

a slab of wood.

18181818

striking, while the long FSR measures force and position of the heel of the
left hand, to determine pitch. When the square FSR was tapped once and
released, a MIDI message was encoded with a Ga NOTE ON, with the
pitch byte determined by the long FSR and the velocity determined by the
force measured by the square FSR. To simulate a Ka stroke, it was simply
decided that when the square FSR was held down by the entire slap of the
hand, then a Ka NOTE ON would be triggered, with the velocity
determined by force on the square FSR.

EBayan’s Initial BASIC Stamp Carrier Board:

Figure 4.2 and Figure 4.3 describe the circuit designs for the long

FSR and the square FSR respectively, showing connections to the different
pins of the BASIC Stamp and to the analog-to-digital converter (ADC).
The ADC used is Linear Technology’s LTC 1298 12-bit ADC Chip which
comes in Parallax’s AppKit.20 The circuit design used to wire the ADC is
shown in Figure 4.4 (a). Figure 4.4 (b) shows the connections made to
create the MIDI OUT port.

Figure 4.2 Drawings showing circuitry to connect the long FSR on the EBayan

19191919

Figure 4.3 Drawing showing circuitry of first
square FSR on the EBayan

 (a) (b)
Figure 4.4 Drawing (a) shows the circuitry design of A-to-D Converter for the EBayan.

Drawing (b) shows the circuitry for the MIDI OUT port on the EBayan.

20202020

EBayan 1.0 Design Problems:

 The problem with this schematic was
that the square FSR could not distinguish
between a hand slapping Ka and fingers striking
Ga. The thought was that when the square FSR
was held down a Ka command would be sent
through the MIDI OUT port. However, this did
not work out, because fast finger strikes ended
up sending Ka commands, and a Ga command
would be sent out at the beginning of every Ka
stroke. Figure 4.5 shows the EBayan at this point.

December 15th, 2001

EBayan 2.0: Addition of a Square FSR

A solution to the problem described above was to add another

square FSR above the existing square FSR that can only be reached by
fingers when the left hand slaps the Ka stroke. Figure 4.6 shows a layout of
EBayan 2.0. The top square FSR (referred to as Slapper) is used to capture

Ka stroke events, when a player slaps
down with their left hand. If it receives
a signal, then the other two FSRs are
ignored. The square FSR in the middle
(referred to as Striker), captures Ga
stroke events, when struck by the
middle and index finger of the left
hand. The long FSR (referred to as
Bender) controls the pitch of the Ga
stroke events as it did in EBayan 1.0.

 The Slapper FSR is different than the Striker FSR, because it uses an
RC time circuit to trigger events, rather than going through a channel on the
ADC. The force on the Bender FSR is being captured by a RC time circuit,
while the position is going through channel 1 of the ADC. The Slapper FSR
is attached to pin 7 as shown in Figure 4.7. Figure 4.8 shows the picture of
the BASIC Stamp Carrier Board for the EBayan at this stage.

Figure 4.5 EBayan 1.0

Figure 4.6 Picture showing EBayan 2.0
FSR layout

21212121

January 15th, 2002

EDahina 1.0:

To implement the EDahina, four
FSRs were used: two long FSRs, one
square FSR, and one small FSR attached
to a circular piece cardboard. Figure 4.9
shows a layout of these FSRs. The small
FSR triggers a Tit stroke event. It
measures the velocity of the index finger’s
strike. The square FSR triggers a Tira
stroke event. It measures the velocity of
the hand slapping the top of the drum. If
the Tira FSR is struck, all other FSRs are
ignored. If the Tit FSR is struck, both long
FSRs are ignored. The rightmost long FSR

in Figure 4.9, is the ring finger FSR, and the leftmost long FSR is the index
finger FSR. If there is a little force on the ring finger FSR (modeling a
mute), and the index finger FSR is struck at the edge of circle, a Na stroke
is triggered. If the index finger FSR is struck near the center of the circle, a
Ta stroke is triggered. If there is no force on the ring finger FSR, and the
index finger FSR is stuck, then a Tu stroke is triggered. When the ring
finger FSR is struck with enough force, and not held down, then a Ti

Figure 4.9 Picture showing EDahina
FSR layout

Figure 4.8: Picture showing BASIC
Stamp Carrier Board for EBayan

2.0

Diagram showing RC Time
circuit of the Slapper FSR

22222222

stroke is triggered. Thus the modeling was completed for every stroke
that was discussed in Chapter 2.

For this drum, two analog-to-digital converters were used. Each

ADC had one square FSR going into channel 0, and position data coming
in from one long FSR going into channel 1. Table 4.1 describes how the
variables are collected.

FSR VARIABLE COLLECTION
Ring Finger (long) Velocity RC Time
Index Finger (long) Velocity RC Time
Tira (square) Velocity Channel 0 on ADC A
Ring Finger (long) Position Channel 1 on ADC A
Tit (square) Velocity Channel 0 on ADC B
Index Finger (long) Position Channel 1 on ADC B

Figure 4.10 shows design circuitry used to obtain velocity and

position of the Ring Finger FSR. Figure 4.11 shows design circuitry to
obtain velocity and position of the Index Finger FSR. Figure 4.12 (a) shows

Table 4.1: Table describing how variables are collected for EBayan 1.0

Figure 4.10: Drawing describing circuit design of the EDahina’s Ring Finger FSR

23232323

the circuit design to obtain velocity of Tira FSR, and Figure 4.12 (b) shows
circuit design to obtain velocity of Tit FSR. Details about ADC A and ADC
B are shown in Figure 4.13 (a) and (b) respectively. The MIDI OUT port on
the EDahina is wired in the same way as the EBayan. Figure 4.14 shows a
picture of the BASIC Stamp Carrier Board for the EDahina 1.0.

Figure 4.11: Drawing describing circuit design of the EDahina’s Index Finger FSR

Figure 4.12: Drawing (a) shows the circuitry design of Tira FSR for the EDahina.
Drawing (b) shows the circuitry design of the Tit FSR for the EDahina.

24242424

ETabla 1.0: First User Test

The ETabla 1.0 is the combination

of the EBayan 2.0 and EDahina 1.0.
Figure 4.15 shows a picture of the
controllers in their constructed
encasements for the first time. Manjul
Bhargava, a musician who has been
playing Tabla for 10 years, tested the
ETabla at this point. He successfully was
able to trigger all the traditional Tabla
strokes discussed in Chapter 2, but with
a margin of error. He hypothesized that
the errors occurred because the ETabla
1.0 was not stable, as the slab of wood Figure 4.15: The Electronic Tabla

Controller

 (a) (b)
Figure 4.13: Drawing (a) shows the circuitry design of A-to-D Converter A for the EDahina.

Drawing (b) shows the circuitry design of A-to-D Converter B for the EDahina.

Figure 4.14: Picture showing BASIC Stamp Carrier Board fo EDahina 1.0

25252525

and piece of cardboard were simply sitting on top of a Tabla shell, without
any support.

March 7th, 2002

ETabla 2.0: Constructing the ETabla Encasement

One of the goals of the project is to make the ETabla’s encasement

look and feel like a real Tabla. To achieve this, a professional millwork
foreman, named Brad Alexander was hired to help create custom wood
pieces for the ETabla. Brad runs County Cabinet Shop, Inc. in Princeton,
New Jersey.

The starting point was to draw designs for the custom pieces on

AutoCad software. The AutoCad drawing would then be converted to
Gcode which machinery would cut out of wood. This point-to-point
computer controlled machine is shown on the left of Figure 4.16. Three
pieces were designed. The first was the top cover for the EDahina, shown
in Figure 4.17 (a). This piece snuggly plugged into the hole on the
EDahina and had 16 holes for roping and holes to fit the FSRs in the
desired schematic. The second piece was a larger version of the EDahina’s
top cover, which would fit the EBayan, shown in Figure 4.17 (b). The third
piece was a bottom ring which could fit both the EDahina and EBayan to
help rope the drums together. Figure 4.17 (c) shows a group of these rings.

Figure 4.16: Pictures showing professional Wood Working Machinery at County Cabinet Shop,
Inc.

26262626

Long, cylindrical pieces of wood were cut for the EDahina to make

it look like a real Tabla. Rope was purchased that could fit through the
holes that were drilled in all the pieces. This rope was dyed black as
shown in Figure 4.18 (a). The top covers, the bottom rings and the
cylindrical pieces of wood were all painted black as shown in Figure 4.18
(b) and (c).

 (a) (b) (c)
Figure 4.17: Pictures showing custom wooden pieces created at County Cabinet Shop, Inc.

 (a) (b) (c)
Figure 4.18: Pictures showing painting process of the ETabla 2.0.

 (a) (b) (c)
Figure 4.19: Pictures showing Technology integrated into encasement of the ETabla 2.0.

27272727

 Holes were drilled into the EDahina so that the BASIC Stamp
Carrier Board and the MIDI OUT port could be accessed, as shown in
Figure 4.19 (a). The FSRs were mounted onto the top covers as shown in
Figure 4.19 (b) and (c). The drums were roped and put together.

 The PBASIC code was modified to work through the Roland
HandSonic, which is a professionally made drum controller which has
hundreds of different drum settings in its sound bank. The HandSonic’s
sound bank has three settings for Tabla. The ETabla was set up to trigger
the correct sound based on which FSR was struck. PBASIC code for the
ETabla is included in Appendix B (Dahina2HS.bs2 and Bayan2HS.bs2).

ETabla 2.0: Design Problems:

 The ETabla 2.0 is shown in
Figure 4.20. At this point, there were a
few problems which needed to be
addressed. The BASIC Stamp Carrier
Board and the MIDI OUT port on the
EDahina kept slipping inside the
encasement. Nuts and bolts were
added to fix this problem. Also LEDs
were required to help debugging. It
would be nice to know whether the
BASIC Stamp is receiving power and
if it is sending messages. Also, the FSRs needed to be protected by some
covering which still shows their location.

March 23rd, 2002

ETabla 2.0: User Testing:

 The response time of the EDahina was illustrated by user testing. A
metronome was used to measure the rate at which one can strike a
particular FSR before it becomes unreliable. To design this user test, I took
the test myself. I played the EDahina through the Roland HandSonic.
Below is a chart showing the response times of the EDahina by stroke.
There is one strike per metronome click tested for each stroke. A * denotes
if the sound response is immediate with no problems.

Figure 4.20: Picture showing ETabla 2.0

28282828

Clicks per
minute:

60 70 80 900 100 110 120 130 140 150 160 170

Tira Stroke * * * * * * * * * * * *
Tit Stroke * * * * * * * * * * * *
Ring Finger FSR
(Ta stroke)

*

Index Finger
FSR(Na Stroke)

* * * * * * * * *

Index Finger FSR
(Ta Stroke)

* * * * * * * * * *

Index Finger FSR
(Tu Stroke)

* * * * * * * * * * *

From this user test, it was clear that the two FSRs which only

measure position were responding well. However, the long FSRs were
running slow. This could be because the force variable for the long FSR is
captured through RC time rather than on a channel on the ADC. RC time
is slower. I also felt that the Ring Finger FSR was not calibrated correctly
in the PBASIC code and thus finger strike responses were difficult to pick
up.

To solve these time problems, an upgrade from the BASIC Stamp II to the
BASIC Stamp IIsx was required for reasons described in Chapter 3.

April 3rd, 2002

ETabla 3.0: Upgrading to the BASIC Stamp IIsx:

 The new micro controller was upgraded on both the EDahina and
EBayan. The chips should now run 2.5 times faster. There were three
modifications needed to upgrade from the BASIC Stamp II to the BASIC
Stamp IIsx. First, new software which can compile PBASICIIsx code
needed to be installed. Second, variables which are captured by RC time
were double in value, and thus the PBASIC code needed to be
recalibrated. Third, the serout command needed to be modified from:

serout 8. 12. 1. [144, 70. RfA]
to:

serout 8. 60. 1. [144, 70. RfA]
This variable is the timing variable of the MIDI message and is thus
effected by the change in speed of the micro controller. Code for the
PBASICIIsx code is included in Appendix B.

22229999

ETabla 3.0: User Testing:

 I now requested Manjul Bhargava to play Tin Taal (described in
Chapter 2) and tracked how fast he could play each stroke. Manjul
successfully played a recognizable Tin Taal using the ETabla 3.0 at a
moderate tempo.

 Manjul then tested the response time of the EDahina. Below is a
chart showing the results of his tests. There is one strike per metronome
click. A * denotes if the sound response is immediate with no problems.

Clicks per
minute:

140 160 180 200 220 240 260 280 300 320 340 360

Tira Stroke * * * * * * * * * * *
Tit Stroke * * * * * * * * * *
Ring Finger FSR
(Ta stroke)

* * * * *

Index Finger
FSR(Na Stroke)

* * * *

Index Finger FSR
(Ta Stroke)

* * * *

Index Finger FSR
(Tu Stroke)

* * * *

The Ta stroke on the Ring Finger FSR was the slowest for the

ETabla 2.0 user test, only being able to be hit at 60 beats per minute. With
the new upgrade, the ETabla 3.0 could now do the same strike 3.5 times
faster at 220 beats per minute! This was a major improvement. The Tira
and Tit strokes were very fast and were acceptable for performance. The
next goal was to raise every stroke close to this level.

Manjul complained that the two long FSRs were generally difficult

to strike and get a response. This could be fixed with recalibration. He also
recommended that the edge of the Index Finger FSR should always play a
Na stroke and the center should always play a Tu stroke. This
improvement would make the response time faster.

30303030

April 6th, 2002

ETabla 4.0: Optimization of the PBASIC code:

 To try increasing the response time of the ETabla, the PBASIC code
was optimized to run faster. It was confirmed that no mathematical
manipulation of variables occurred unless they needed to for that
particular event. This involved moving some lines of code into and out of
different if conditions. Then all divide operations were converted to shift
right operations to save instruction time. Thus “divide by 4” was replaced
by “shift right 2”. Next, the position variable for the Ring Finger FSR was
eliminated, as it is not used in triggering the HandSonic. Adjustments
were also made to the Index Finger FSR, as Manjul recommended.

April 23rd, 2002

ETabla 5.0: Triggering the STK Toolkit:

 The ETabla was modified to run two types programs: one to trigger
the HandSonic, and the other to trigger the STK Toolkit Tabla sounds,
discussed in Chapter 6. For MIDI messages, the STK Toolkit separated the
Bayan onto channel 0 and the Dahina onto channel 1. It also did not
require any NOTE OFF messages, so all were removed. The linear
variables on the EDahina, now had the functionality of changing
resonance, which the Handsonic could not do. The edge of the EDahina
was programmed to be most resonant, while the center of the drum was
programmed to be least resonant. The Long FSR on the EBayan sent POLY
PRESSURE MIDI messages to change the pitch of the Ga strokes real-time.
Thus pitch bending was achieved and functional. PBASICIIsx code that
triggers the STK Toolkit is included in Appendix B.

31313131

ETabla 5.0: Final Touches:

 Final adjustments to the ETabla were
made to ensure it could be used in
performance on April 25th, 2002 in Taplin
Auditorium. This concert is described in
Chapter 8 in detail. A protective substance
covering the FSRs was created, and each drum
was assembled using rope. A final picture of
the ETabla is shown in Figure 4.21.

Figure 4.21: Picture showing
the ETabla in its final form

32323232

Sound Analysis of the
Tabla
“The Musical Drum”21

his chapter describes modal analysis of the Tabla. It defines modal
analysis and other digital signal processing terms used to describe
experimentation of the sound of the Tabla. Then it presents

experiments performed in 1919, by scientist C.V. Raman who coined the
name for the Tabla: “The Musical Drum”21. It finally documents the
experiments I have done using MATLAB programming to analyze the
sounds of the Tabla, and compare the data obtained with the results of
C.V. Raman. The information learned from this process will be used to
create a physical model of the sound of the Tabla, which is described in
Chapter 6.

What is Modal Analysis?

 Sound is vibration that propagates through air, created by the
oscillations of objects such as vocal chords, musical instruments, and
speakers. These vibrations are converted to the realm of digital audio by
recording the sound using a microphone, which converts the varying air
pressure into varying voltage. An analog-to-digital converter measures
the voltage at regular intervals of time. For all recordings in this analysis,
there are 44,100 samples per second. This is known as the sampling rate
(SR). The data the computer stores after the analog-to-digital conversion is
the sound as a function of time.22 Figure 5.1 is a graph of a sound of a
Bayan as a function of time.

Chapter

5

T

33333333

When one plucks a string or blows air through a tube, it begins a

repeating pattern of movement, known as oscillation. If a sound has a
repeating pattern of movement it has a tone and pitch (harmonic), which
distinguishes it from noise (inharmonic). The tone and pitch of the sound
can be determined by a sine wave with a particular frequency.22 The
cochlea, an organ in the inner ear enables humans to detect these
frequencies. The cochlea is a spiral shaped sum of tissue, with thousands
of miniscule hairs that vary in size. The shorter hairs resonate with higher
frequencies, while the longer hairs resonate with lower frequencies. So the
cochlea converts the air pressure to frequency information, which the
brain can use to classify sounds.23 The Fourier Transform is a
mathematical technique that does this exact process. It converts sounds
represented in the time domain to sound represented in the frequency
domain.22

Fourier analysis is based on the important mathematical theorem

formulated by Joseph Fourier (1768-1830): “Any periodic vibration,
however complicated, can be built up from a series of simple vibrations,
whose frequencies are harmonics of a fundamental frequency, by
choosing the proper amplitudes and phases of these harmonics”24. The
Fourier Transform takes a periodic function of time F(t) and turns it into a
summation of cosine and sine waves. A periodic function is transformed
into the Fourier Series by the equation below:

() ()()∑
∞

=

+=
1

2sin2cos)(
m

omom tkfbtkfatF ππ

Figure 5.1: Graph of sound of the Bayan as a function of time.

34343434

The term am is the average waveform. Coefficients bm and cm are the
weights of the cosine and sine terms, which describe different
frequencies.22

With the Fast Fourier Transform (FFT), one can find the peaks of a
sound, in the frequency domain. These peaks are known as modes. In this
chapter the modes of the Tabla will be analyzed.

C.V. Raman’s Tabla Sound Analysis

Nobel Prize winning scientist C.V. Raman published his works on
the acoustic characteristics of the Tabla in 1934.21 He explains that the
drums have two features which enable strikes to emit harmonic tones
which sustain, distinguishing the Tabla from any other drum in the world.
First is the heavy wooden shell on which the pudi (drum-head) is stretched
upon. Second is the weight added to the pudi of iron-filings, rice, charcoal,
and gum, which is precisely applied to match the sustaining tone that the
acoustic of the shell prescribe. Raman further explains that the duration of
the tone is a function of the width of the ring of leather which holds the
pudi in place. A narrow ring emits a prolonged, bright tone, whereas a
broad ring emits a dull, short-lived tone.

The first nine normal modes of the membrane can be split into five

harmonic tones because of the unique construction of the Tabla. The
normal modes of a harmonic circular membrane described by Raman, are
shown in Figure 5.2. The dotted lines denote nodal lines.

Figure 5.2: Figure showing Normal modes of a Harmonic Membrane 21

35353535

The first mode of vibration occurs when the flat fingertips slap the
center of the drum and quickly releases. This mode is without any interior
nodal lines. This is the fundamental mode. The second harmonic occurs
when the membrane vibrates in two separate parts, divided by a nodal
diameter. This mode is excited when the flat palm slaps the edge of the
pudi while a finger gently lays upon a diameter.

The third harmonic mode occurs when the pudi’s vibration is

separated by two parallel nodal lines. This mode is excited by the Na
stroke, which makes the pudi vibrate in three circular regions. The fourth
harmonic occurs when the pudi’s vibration is separated into three parallel
regions. This could be exerted by adding the middle finger as a damper in
the Na stroke, dividing the pudi into four regions. The fifth harmonic is
excited by splitting the pudi into five different parts, separated by four
nodal lines. This is generally very difficult to achieve on most Tabla. 21

Modal Analysis using MATLAB

 This section will describe modal analysis of different Tabla strokes
using MATLAB programming. I am trying to observe if in fact the Tabla
emits a harmonic tone, validating it as a “musical drum” which C.V.
Raman observed. I will outline the evolution and development of software
that can be used to obtain the modes of any sound file. All MATLAB code
described in this section can be found in Appendix D.

The sound files used in this analysis can be found on the CD at the
back of this report. They are taken from Zakir Hussain’s, Remember
Shakti, CD 2, Track 1.25 The following chart describes how I will refer to
these sound files:

TRACK Sound File Name Drum Stroke
1 new-B.wav Bayan Ga
2 D-na.wav Dahina Na
3 D-tu.wav Dahina Tu
4 D-ta.wav Dahina Ta

36363636

FFT:

The first program I wrote was a function that calculates and graphs
the FFT of the first frame of a given sound file. I did this using Matlab, as
it has functions that support sound files. This function is called myFFT.m,
and takes in the digital array containing the sound file and the FFTSize.
The FFT size is the number of bins that the frequency domain is broken
into. To convert the frequency in hertz given the bin, one uses the
following equation:

)(
))(()(

FFTSize
binteSamplingRaHzFrequency =

 I graphed the first frame of sound file new-B.wav, with the
following Matlab command:

array = myFFT('new-B.wav', 44100);
The program output the following graph:

From this graph, one can determine that the first frame of the Ga
stroke has peaks at low frequency bins. However, one cannot determine
how these frequencies change over time. This is implemented in the next
program.

37373737

Short-Time Fourier Transform (STFT):

Now I need to calculate the FFT for every frame in the sound file.
This is known as a STFT. I implemented this in Spectrogram1.m. This
program takes in the sound file, the sampling rate (which is always 44,100
Hz for this analysis), and whether one wants a linear FFT or a logarithmic
FFT. In a logarithmic graph, one can see more peaks then in a linear
graph, as the amplitudes are put through a logarithm function. This
decreases the distance between very high peaks and lower peaks, for
easier visual analysis.

I first graphed the linear version of sound file new-B.wav, with the
following Matlab command:

array = Spectrogram1('new-B.wav', 44100, 'Lin');
The program output is the graph below:

I then graphed the logarithmic version of the same sound file new-B.wav,
with the following Matlab command:

array = Spectrogram1('new-B.wav', 44100, 'Log');
The program output is the graph on the next page:

38383838

As one can see, the logarithmic version of the Spectrogram portrays more
detail to the human eye, for easier analysis. We can see from these graphs
that the Bayan stroke Ga has many peaks at lower frequencies. However
these graphs do not help determine exactly what frequencies these peaks
occur at. They just give a general sense of what the sound file’s
frequencies are over time.

BREAKING UP THE STFT:

 Now I am going to create a program that splits the STFT into three
parts: high frequency, middle frequency, and low frequency, for sharper
visual analysis. I am also going to average every ten frames together for
easier analysis. This program is implemented in Spectrogram2.m . This
program takes in the sound file, the sampling rate, and whether one wants
a linear FFT or a logarithmic FFT.

39393939

I first graphed the linear version of sound file new-B.wav, with the

following Matlab command:
array = Spectrogram2('new-B.wav', 44100, 'Lin');

The programs output the following four graphs:

I then graphed the logarithmic version of sound file new-B.wav,
with the following Matlab command:

array = Spectrogram2('new-B.wav', 44100, 'Log');
The program output the following four graphs, shown on the next page:

40404040

 From these low frequency graphs, one can see that the highest peaks
are below bin 50. From the high and middle frequency graphs, one can see
that the Ga stroke has higher and middle frequencies in the initial attack,
which then die down fairly quickly. However, it is interesting that towards
the end of the duration of the sound, the high and middle frequencies
return to their initial amplitudes. One can attribute this quality to force
exerted by the heel of the hand on the head of the drum, which creates a
pitch bending effect. The more force the higher the tone. This explains why
the graphs look the way they do. This is a key finding in our analysis!

PEAK FINDING TRIAL 1:

 Next, I created a program that finds the peaks of the FFT, and how
they vary over time. This program graphs the peaks on a 3D axis. It prints
out both the linear version of the graph and logarithmic version. I
implemented this program in Spectrogram3.m. It takes in the sound file, the
sampling rate, and an accuracy number, which determines how precise
the peak search is. The higher the accuracy, the more number of peaks it

41414141

will find. This program uses a function called HillClimbing.m (written by
Tae Hong Park), which finds the maximum peaks by determining change
in slope.

I first graphed the sound file new-B.wav, with an accuracy of 40,

with the following Matlab command:
array = Spectrogram3('new-B.wav', 44100, 40);

It created the following two graphs:

I then graphed the sound file new-B.wav, with an accuracy of 20,
with the following Matlab command:

array = Spectrogram3('new-B.wav', 44100, 40);
It created the following two graphs:

An accuracy of 40 and an accuracy of 20 gave the same linear graph.
However an accuracy of 40 gave a myriad of peaks, where as 20 gave a more
manageable amount. From the way I find the maximum peaks in this
implementation, I do not have a consistent number of peaks per time frame. Also I
do not have a way of determining what the peaks are exactly. This will have to be
changed in the next implementation.

42424242

PEAK FINDING TRIAL 2:

 The next program finds the six highest peaks of the FFT for each
frame of the sound file. It then converts the bins to hertz, by the equation:

)(
))(()(

FFTSize
binteSamplingRaHzFrequency =

 These values are printed out for the linear version of the FFT. This
program is implemented in Spectrogram4.m. It takes in the sound file and
the sampling rate as arguments. This program calls a function called
sixpeaks.m, to find the maximum peaks of the FFT of each frame. This
function determines the peaks by first finding the highest point of the
entire FFT, storing it, and then zeroing it out to the minimum value of the
FFT. It then zeros out all the points of that hill until the slope changes on
either side. It then goes and finds the next maximum value. It repeats this
process for six peaks.

I graphed the sound file new-B.wav, with the following Matlab
command:

array = Spectrogram4('new-B.wav', 44100);
It created the following two graphs, followed by the peaks for

every frame of the linear FFT (In order of descending magnitude):

129.199219 172.265625 215.332031 258.398438 689.062500 301.464844
129.199219 344.531250 215.332031 387.597656 430.664063 473.730469
129.199219 387.597656 430.664063 215.332031 172.265625 301.464844
129.199219 172.265625 387.597656 215.332031 301.464844 258.398438
129.199219 172.265625 301.464844 215.332031 258.398438 344.531250
129.199219 301.464844 387.597656 430.664063 172.265625 258.398438
129.199219 301.464844 387.597656 430.664063 215.332031 344.531250
129.199219 301.464844 387.597656 430.664063 344.531250 215.332031
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031
129.199219 301.464844 473.730469 430.664063 215.332031 387.597656
129.199219 301.464844 387.597656 430.664063 215.332031 473.730469
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031
129.199219 301.464844 387.597656 473.730469 430.664063 215.332031

43434343

129.199219 301.464844 473.730469 430.664063 387.597656 172.265625
129.199219 301.464844 387.597656 430.664063 473.730469 344.531250
129.199219 301.464844 430.664063 172.265625 387.597656 473.730469
129.199219 387.597656 301.464844 473.730469 215.332031 430.664063
129.199219 473.730469 301.464844 172.265625 430.664063 387.597656
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031
129.199219 301.464844 387.597656 473.730469 215.332031 430.664063
129.199219 301.464844 473.730469 430.664063 172.265625 215.332031
129.199219 301.464844 387.597656 215.332031 430.664063 473.730469
129.199219 301.464844 387.597656 430.664063 215.332031 473.730469
129.199219 387.597656 301.464844 473.730469 430.664063 215.332031
129.199219 387.597656 473.730469 172.265625 301.464844 430.664063
129.199219 430.664063 301.464844 387.597656 172.265625 215.332031
129.199219 301.464844 387.597656 430.664063 344.531250 86.132813

129.199219 301.464844 387.597656 473.730469 172.265625 430.664063
129.199219 301.464844 430.664063 215.332031 387.597656 172.265625
129.199219 301.464844 430.664063 387.597656 215.332031 258.398438
129.199219 387.597656 301.464844 430.664063 215.332031 473.730469
129.199219 301.464844 387.597656 430.664063 172.265625 473.730469
129.199219 301.464844 387.597656 430.664063 258.398438 215.332031
129.199219 301.464844 215.332031 430.664063 387.597656 172.265625
129.199219 215.332031 387.597656 301.464844 172.265625 430.664063
129.199219 215.332031 387.597656 301.464844 430.664063 473.730469
129.199219 387.597656 215.332031 301.464844 172.265625 430.664063
129.199219 258.398438 172.265625 387.597656 301.464844 215.332031
129.199219 430.664063 215.332031 387.597656 301.464844 172.265625
129.199219 387.597656 215.332031 430.664063 172.265625 86.132813

129.199219 215.332031 258.398438 301.464844 430.664063 387.597656
129.199219 301.464844 387.597656 430.664063 215.332031 258.398438
129.199219 387.597656 301.464844 430.664063 172.265625 86.132813

129.199219 258.398438 430.664063 387.597656 301.464844 172.265625
129.199219 215.332031 387.597656 301.464844 430.664063 258.398438
129.199219 301.464844 387.597656 172.265625 258.398438 215.332031
129.199219 301.464844 172.265625 430.664063 387.597656 344.531250
129.199219 215.332031 172.265625 387.597656 301.464844 258.398438
129.199219 215.332031 387.597656 430.664063 86.132813 301.464844
129.199219 215.332031 172.265625 301.464844 258.398438 387.597656
129.199219 215.332031 301.464844 258.398438 344.531250 387.597656
129.199219 215.332031 301.464844 172.265625 258.398438 387.597656
129.199219 215.332031 301.464844 387.597656 172.265625 258.398438
129.199219 301.464844 215.332031 387.597656 258.398438 172.265625
129.199219 301.464844 215.332031 258.398438 387.597656 172.265625
129.199219 301.464844 215.332031 344.531250 86.132813 387.597656
129.199219 301.464844 215.332031 387.597656 344.531250 172.265625
129.199219 172.265625 215.332031 301.464844 387.597656 344.531250
129.199219 215.332031 301.464844 172.265625 344.531250 86.132813
129.199219 215.332031 301.464844 172.265625 258.398438 86.132813

129.199219 301.464844 215.332031 172.265625 86.132813 344.531250
129.199219 172.265625 301.464844 86.132813 43.066406 215.332031
129.199219 86.132813 172.265625 43.066406 344.531250 301.464844
129.199219 86.132813 172.265625 43.066406 215.332031 344.531250
129.199219 172.265625 86.132813 215.332031 43.066406 344.531250
129.199219 172.265625 215.332031 86.132813 301.464844 258.398438
129.199219 172.265625 344.531250 215.332031 86.132813 301.464844
129.199219 172.265625 86.132813 43.066406 344.531250 215.332031
129.199219 86.132813 172.265625 43.066406 215.332031 258.398438
129.199219 172.265625 86.132813 43.066406 258.398438 215.332031
129.199219 172.265625 215.332031 86.132813 258.398438 387.597656
129.199219 172.265625 86.132813 215.332031 43.066406 344.531250
129.199219 172.265625 86.132813 43.066406 387.597656 215.332031
172.265625 129.199219 258.398438 215.332031 86.132813 344.531250
172.265625 129.199219 86.132813 43.066406 258.398438 215.332031
129.199219 172.265625 215.332031 86.132813 301.464844 387.597656
129.199219 172.265625 86.132813 215.332031 43.066406 258.398438
172.265625 129.199219 86.132813 215.332031 43.066406 258.398438
172.265625 129.199219 215.332031 258.398438 301.464844 86.132813

172.265625 129.199219 215.332031 86.132813 43.066406 258.398438
172.265625 129.199219 215.332031 86.132813 258.398438 387.597656
172.265625 129.199219 215.332031 86.132813 43.066406 258.398438
172.265625 215.332031 129.199219 258.398438 344.531250 387.597656
215.332031 129.199219 258.398438 301.464844 86.132813 430.664063
215.332031 129.199219 172.265625 258.398438 301.464844 86.132813

172.265625 215.332031 129.199219 258.398438 344.531250 301.464844
215.332031 129.199219 258.398438 301.464844 86.132813 344.531250
215.332031 129.199219 172.265625 258.398438 301.464844 344.531250
172.265625 215.332031 129.199219 301.464844 258.398438 344.531250

44444444

From the graphs one can see that six highest peaks are in the lower
frequencies, for both the logarithmic version and the linear version. From
the frequencies printed out one can see that peaks range from 86.1328 Hz
to 430.6640 Hz. However, there are too many numbers printed out to do a
proper analysis. In the next implementation I will fix this.

PEAK FINDING TRIAL 3:

 In the next program, a variable number peaks, determined by the
user, can be found for an averaged number of frames. The number of
averaged frames is a variable that can also be determined by the user. This
program is implemented in Spectrogram5.m. It takes in the sound file, the
sampling rate, whether one wants a linear FFT or a logarithmic FFT, k
number of frames to be averaged, the number of peaks to find, the FFT
size, and whether one wants the peaks printed out in order of ascending
magnitude or ascending frequency. This program calls a function peaks.m
that finds the maximum peaks for each k averaged FFT frames. This
function uses the same algorithm as sixpeaks.m discussed in Peak Finding
Trial 2, except that it has a variable number of peaks.

Analysis of Ga stroke:

 I graphed the sound file new-B.wav, with the following Matlab
command:

array = Spectrogram5('new-B.wav', 44100, 'Lin', 10, 8, 1024, 'Bin');
It created the following graph, followed by the frequency in hertz as they
change over time, in ascending frequency order:

45454545

129.199219 172.265625 215.332031 258.398438 301.464844 344.531250 387.597656 430.664063
129.199219 172.265625 215.332031 301.464844 344.531250 387.597656 430.664063 473.730469
129.199219 172.265625 215.332031 301.464844 344.531250 387.597656 430.664063 473.730469
129.199219 172.265625 215.332031 258.398438 301.464844 387.597656 430.664063 473.730469
86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 387.597656 430.664063
86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 344.531250 387.597656
43.066406 86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 344.531250
43.066406 86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 387.597656

I then wanted to see which peaks were the highest in order of Magnitude,
so I typed in the following Matlab command:

array = Spectrogram5('new-B.wav', 44100, 'Lin', 10, 8, 1024, 'Mag');

It gave the same graph as above with these numbers:

129.199219 301.464844 387.597656 172.265625 430.664063 215.332031 344.531250 258.398438
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031 172.265625 344.531250
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031 172.265625 344.531250
129.199219 301.464844 387.597656 215.332031 430.664063 172.265625 258.398438 473.730469
129.199219 387.597656 215.332031 301.464844 430.664063 258.398438 172.265625 86.132813
129.199219 215.332031 301.464844 172.265625 387.597656 344.531250 258.398438 86.132813
129.199219 172.265625 86.132813 215.332031 43.066406 301.464844 344.531250 258.398438
129.199219 172.265625 86.132813 215.332031 43.066406 258.398438 301.464844 387.597656

I zoomed in on the important part of the linear version of the graph for the
Ga stroke, which is shown on the next page:

46464646

I then looked at the logarithmic version of this sound file, by typing
the following Matlab command:

array = Spectrogram5('new-B.wav', 44100, 'Log', 10, 8 , 1024, 'Bin');
It created the following graph, followed by the frequency in hertz as they
change over time, in ascending frequency order:

129.199219 172.265625 215.332031 258.398438 301.464844 344.531250 387.597656 430.664063
129.199219 172.265625 215.332031 301.464844 344.531250 387.597656 430.664063 473.730469
129.199219 172.265625 215.332031 301.464844 344.531250 387.597656 430.664063 473.730469

47474747

129.199219 172.265625 215.332031 258.398438 301.464844 387.597656 430.664063 473.730469
86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 387.597656 430.664063
86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 344.531250 387.597656
43.066406 86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 344.531250
43.066406 86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 387.597656

I then wanted to see which peaks were the highest in order of Magnitude,
so I typed in the following Matlab command:

array = Spectrogram5('new-B.wav', 44100, ‘Log’, 10, 8, 1024, 'Mag');
It gave the same graph as above with these numbers:

129.199219 301.464844 387.597656 172.265625 430.664063 215.332031 344.531250 258.398438
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031 172.265625 344.531250
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031 172.265625 344.531250
129.199219 301.464844 387.597656 215.332031 430.664063 172.265625 258.398438 473.730469
129.199219 387.597656 215.332031 301.464844 430.664063 258.398438 172.265625 86.132813
129.199219 215.332031 301.464844 172.265625 387.597656 344.531250 258.398438 86.132813
129.199219 172.265625 86.132813 215.332031 43.066406 301.464844 344.531250 258.398438
129.199219 172.265625 86.132813 215.332031 43.066406 258.398438 301.464844 387.597656

I zoomed in on the important part of the logarithmic version of the graph
for the Ga stroke, which is shown below:

One can first notice that the logarithmic and linear versions of the

graphs and data are close to identical in terms of frequency information,
which is expected. Thus, for other sound file analysis, we will only look at
the logarithmic version of the sound.

48484848

From the data, one can determine that the Ga stroke has a
fundamental frequency of around 129 Hz, which is present throughout
the sound file. It is also clear that 258 Hz (which is 2 * 129 Hz) is a mode
and 387 Hz (which is 3 * 129 Hz) is a mode. Notice that these 2 modes are
multiples of 2 and 3 of the fundamental pitch. This means that the Bayan
creates a harmonic tone.21 One can also notice from the graphs that the
tones lower frequency peaks that are not the fundamental, decay in
amplitude over time.

Analysis of Na stroke:

 I graphed the sound file D-na.wav, with the following Matlab
command:

array = Spectrogram5('D-na.wav', 44100, 'Log', 7, 6, 1024, 'Bin');
It created the following graph, followed by the frequency in hertz as they
change over time, in ascending frequency order:

258.398438 344.531250 387.597656 430.664063 1033.593750 1378.125000
172.265625 215.332031 387.597656 689.062500 732.128906 1033.593750
129.199219 172.265625 387.597656 430.664063 689.062500 1033.593750
43.066406 129.199219 172.265625 387.597656 430.664063 689.062500
43.066406 129.199219 172.265625 387.597656 430.664063 689.062500
43.066406 129.199219 172.265625 215.332031 301.464844 689.062500
43.066406 129.199219 172.265625 215.332031 344.531250 689.062500
43.066406 129.199219 172.265625 344.531250 387.597656 430.664063
43.066406 129.199219 172.265625 258.398438 387.597656 689.062500
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406

49494949

43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406

I then wanted to see which peaks were the highest in order of

Magnitude, so I typed in the following Matlab command:
array = Spectrogram5('D-na.wav', 44100, 'Log', 7, 6, 1024, 'Mag');

It gave the same graph as above with these numbers:

1033.593750 430.664063 387.597656 344.531250 1378.125000 258.398438
1033.593750 689.062500 172.265625 387.597656 215.332031 732.128906
1033.593750 387.597656 689.062500 172.265625 430.664063 129.199219
689.062500 430.664063 387.597656 43.066406 129.199219 172.265625
129.199219 689.062500 387.597656 43.066406 172.265625 430.664063
172.265625 129.199219 215.332031 43.066406 689.062500 301.464844
129.199219 43.066406 172.265625 689.062500 344.531250 215.332031
43.066406 129.199219 387.597656 172.265625 430.664063 344.531250
43.066406 172.265625 129.199219 387.597656 258.398438 689.062500
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406

From the data, one can determine that the Na stroke has a

fundamental frequency of around 172 Hz. It is also clear that 344 Hz
(which is 2*172 Hz) is a mode, 689 Hz (which is around 4 * 129 Hz) is a
mode, 1033 Hz (which is around 6*172 Hz), and 1378 Hz (which is around
8 * 172 Hz). Notice that these four modes are multiples of 2, 4, 6, and 8 of
the fundamental pitch. This means that the Dahina creates a harmonic
tone.21 One can also notice from the graphs that the modes decay in
amplitude over time. The 43 Hz which shows up in the data, is the end of
the sound file (due to the hum of the recording), not the sound of the
drum.

Analysis of Tu stroke:

 I graphed the sound file D-tu.wav, with the following Matlab
command:

array = Spectrogram5('D-tu.wav', 44100, 'Log', 3, 6, 1024, 'Bin');
It created the following graph, followed by the frequency in hertz as they
change over time, in ascending frequency order:

50505050

215.332031 301.464844 344.531250 387.597656 430.664063 473.730469
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
43.066406 344.531250 387.597656 430.664063 473.730469 516.796875
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875
43.066406 301.464844 344.531250 387.597656 430.664063 473.730469
43.066406 344.531250 387.597656 430.664063 473.730469 516.796875
43.066406 301.464844 344.531250 387.597656 430.664063 473.730469
43.066406 301.464844 344.531250 387.597656 430.664063 473.730469
43.066406 344.531250 387.597656 430.664063 473.730469 516.796875
43.066406 86.132813 129.199219 172.265625 215.332031 473.730469
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406

I then wanted to see which peaks were the highest in order of
Magnitude, so I typed in the following Matlab command:

array = Spectrogram5('D-tu.wav', 44100, 'Log', 3, 6, 1024, 'Mag');
It gave the same graph as above with these numbers:

387.597656 430.664063 344.531250 473.730469 215.332031 301.464844
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875
387.597656 430.664063 344.531250 473.730469 516.796875 301.464844
387.597656 430.664063 344.531250 473.730469 516.796875 301.464844
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875
387.597656 430.664063 473.730469 344.531250 516.796875 301.464844

51515151

387.597656 430.664063 344.531250 473.730469 301.464844 516.796875
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875
387.597656 430.664063 344.531250 473.730469 43.066406 516.796875
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875
387.597656 430.664063 344.531250 473.730469 301.464844 43.066406
387.597656 430.664063 344.531250 43.066406 473.730469 516.796875
387.597656 430.664063 344.531250 473.730469 43.066406 301.464844
387.597656 430.664063 43.066406 344.531250 473.730469 301.464844
387.597656 430.664063 43.066406 344.531250 473.730469 516.796875
43.066406 86.132813 129.199219 172.265625 215.332031 473.730469
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406

From the data, one can determine that the Tu stroke has the same

fundamental frequency of around 172 Hz as the Na stroke. It is also clear
that 344 Hz (which is 2* 172 Hz) is a mode. Notice that this mode is a
multiple of 2 of the fundamental pitch. It can also be determined that 215
Hz and 430 Hz (2 * 215 Hz) are present. However, it makes sense that the
Tu stroke has the same fundamental as the Na stroke. Either way, this
means that the Dahina creates a harmonic tone.21 One can also notice from
the graphs that the modes decay in amplitude over time. Once again, the
43 Hz which shows up in the data, is the end of the sound file (due to the
hum of the recording), not the sound of the drum.

Analysis of Ta stroke:

 I graphed the sound file D-ta.wav, with the following Matlab
command:

array = Spectrogram5('D-ta.wav', 44100, 'Log', 4, 6, 1024, 'Bin');
It created the following graph, followed by the frequency in hertz as they
change over time, in ascending frequency order:

52525252

387.597656 430.664063 473.730469 516.796875 559.863281 602.929688
43.066406 387.597656 430.664063 473.730469 516.796875 689.062500
43.066406 387.597656 430.664063 516.796875 559.863281 645.996094
43.066406 172.265625 387.597656 473.730469 645.996094 689.062500
43.066406 387.597656 430.664063 516.796875 559.863281 689.062500
43.066406 387.597656 430.664063 473.730469 559.863281 645.996094
43.066406 387.597656 430.664063 473.730469 602.929688 689.062500
43.066406 387.597656 430.664063 473.730469 645.996094 689.062500
43.066406 86.132813 473.730469 516.796875 689.062500 732.128906
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406

I then wanted to see which peaks were the highest in order of
Magnitude, so I typed in the following Matlab command:

array = Spectrogram5('D-ta.wav', 44100, 'Log', 4, 6, 1024, 'Mag');

It gave the same graph as above with these numbers:

387.597656 430.664063 473.730469 602.929688 559.863281 516.796875
473.730469 387.597656 430.664063 689.062500 43.066406 516.796875
430.664063 43.066406 387.597656 645.996094 516.796875 559.863281
387.597656 689.062500 43.066406 473.730469 645.996094 172.265625
43.066406 689.062500 387.597656 559.863281 430.664063 516.796875
43.066406 473.730469 559.863281 387.597656 430.664063 645.996094
430.664063 43.066406 387.597656 602.929688 689.062500 473.730469
43.066406 387.597656 473.730469 689.062500 645.996094 430.664063
43.066406 86.132813 473.730469 732.128906 516.796875 689.062500
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406

From the data, one can determine that the Na stroke has a

fundamental frequency of around 172 Hz. It makes sense that the

53535353

fundamental is the same for all three Dahina strokes we have analyzed. It
is also clear that 344 Hz (which is 2* 172 Hz) is a mode, and 689 Hz (which
is around 4 * 129 Hz) is a mode. Notice that these 2 modes are multiples of
2 and 4 of the fundamental pitch. This verifies once again that the Dahina
creates a harmonic tone. 21 One can also notice from the graphs that the
modes decay in amplitude over time. Once again, the 43 Hz which shows
up in the data, is the end of the sound file (due to the hum of the
recording), not the sound of the drum.

Sound Analysis Conclusion

From this analysis one can determine that the Bayan and the
Dahina studied have fundamentals of 129 Hz and 172 Hz respectively.
Both drums have modes above the fundamental that are integer multiples
of the fundamental frequency, making both the Bayan and the Dahina
harmonic instruments. This concurs with analysis done by C.V. Raman in
1919. However, my analysis must have been much easier to determine this
result compared to Raman’s experiments, because of the power of the
computer as a computational tool.

54545454

Sound Simulation
Using MATLAB and STK Toolkit

his chapter describes the process of creating computer generated
Tabla sounds, by programming physical models which emulate the
acoustic nature of the drums. It first describes attempts to generate

sound using MATLAB programming of the Plucked String Model and
different types of filters. It then proceeds to describe how the Tabla sound
is programmed in STK Toolkit, a software developed at the Center for
Computer Research in Music and Acoustics at Stanford University,
designed by Perry Cook and Gary Scavone. This implementation uses
banded-waveguides to physically model the sound, designed by Georg
Essl, a Ph.D. student at Princeton University.

MATLAB Simulated Sound

Attempt 1:

I started out by using the Plucked String Model to Simulate the

Bayan. This means the filter equation was:

y[n] = x[n] + .5*(y[n-N] + y[n-(N+1)])

I implemented this in the Matlab program called

BayanSimulator2.m, found in Appendix E. One gives this program a start
frequency and end frequency, and the program will morph between the
two. This program runs through the above filter, and then through an
ADSR (Attack, Decay, Sustain, Release) envelope. The simulated sound is

Chapter

6

T

55555555

recorded on Track 5 of the enclosed CD. The problem with it is that it
sounds "too stringy" and does not sound like a drum. However I learned
the details about the Plucked String Model by actually getting to program
it (or rather hack with it).

Attempt 2:

Next, I created a CoefficientFinder.m program, which creates 2

arrays, a and b to hold the coefficients for the equation:

y[n] = a1*x[n] + a2*x[n-1] +a3*x[n-2]+....+b1*y[n-1]+b2*y[n-2]+b3*y[n-3]...

I then put these two arrays into the MATLAB function filter to get my
filtered equation. A graph of the filter I used is shown in the Figure below.
It is based on the discoveries of the harmonic nature of the Tabla
discussed in Chapter 5. A sample of the sound generated is Track 6 on the
CD enclosed. The problem with this program is that it does not allow me
to change the filter with time, as the delay line is lost once variable i does
not equal 1 (see code for BayanSimulator3.m in Appendix E). I now have
achieved modal synthesis!

Graph of Filter Used

56565656

Attempt 3:

Now I created a program that had modal synthesis and that could change
the filter over time. I could not use the MATLAB filter() function to do
this, because the delay line would get lost if the coefficients were changed.
So I had to model a filter similar to the way I did it for the Plucked String
Model. Here is the filter equation I used:

y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+a(5)*x(n-4)+a(6)*x(n-5) +

 b(1)*y(n-1)+b(2)*y(n-2)+b(3)*y(n-3)+b(4)*y(n-4)+b(5)*y(n-5)+b(6)*y(n-6)

 I had to remember to update the delay lines for each iteration. I
changed the filter by using a for loop which at every iteration had the high
frequency amplitude in array m get bigger and bigger, as the low
frequencies get smaller and smaller. I also moved the highest frequency
poles higher and higher at each iteration. This program is called
BayanSimulator.m, and can be found in Appendix E. This did not produce
the desired sound I was hoping.

Physical Model using STK Toolkit
(This section is written by Georg Essl who was in charge of developing Tabla
sound on STK Toolkit)

The electronic Tabla controller signals can be used with any
standard MIDI device to produce sound. However, the typical synthesis
methods do not properly mimic the dynamics of the Tabla drums and
hence the performance sound in relation to strokes is not well captured.
Physical modeling is known to allow for direct physical interactions and
hence the control values produced by the Tabla controller can be directly
used as inputs rather than first finding a mapping that relates controller-
output to synthesis-relevant parameters. We use the “banded
waveguides” which were originally introduced for one-dimensional
structures like bar percussion instruments 26 but has recently been
generalized to higher-dimensional structures 27.

57575757

Banded waveguides are a generalization of digital waveguide filters
which accommodate complex material behavior and higher dimensions
by modeling the traveling waves for each model frequency separately as is
depicted in Figure 6.1.

These collection of banded wavepaths which build the full system
have, however, a geometric correspondence which allows to find the
interactions points. Modes come about as standing waves, which is
equivalent to the condition that traveling waves close onto themselves.
Hence the task of finding geometric positions from modes corresponds to
finding paths that close onto themselves and finding the matching mode
for that path. This problem has been studied by Keller and Rubinow 28
and the construction of finding these paths on a circular membrane is
depicted in Figure 6.2.

Tabla strokes correspond to feeding strike-velocities at the right
positions into the delay-lines. A particularly interesting performance
stroke is the Ga stroke performed on the Bayan. It includes a pitch bend

Figure 6.1: Figure showing banded waveguide schematic.

Figure 6.2: Figures showing construction of paths that
close onto themselves

58585858

which is achieved by modifying the vibrating area due to pushing
forward. This can be viewed as a moving boundary, which in case of
banded waveguide corresponds to a shortening of the closed wavepaths,
which in turn corresponds to a shortening of the delay-lines of the banded
waveguide model. A comparison of a recorded and a simulated Ga stroke
can be seen in Figure 6.3.

Figure 11. Sonograms comparing recorded (left) and
simulated (right) Ga strike.

59595959

Graphical Feedback
by Philip Davidson

The Visual System

The visual system for the electronic Tabla is designed to augment
the experience of the electronic Tabla by providing player and audience
with a visual display that dynamically responds to the drums in parallel
to the audio response. Since the audio synthesis requires most of
processing power of the audio machine, graphics processing occurs on a
second machine, with controller messages routed to both systems. We
will describe the response of the system to Bayan strikes.

Our concept for the graphics system began as a combination of
geometric form with fluid motion. To respond to the percussive energy of
Tabla music, the visualization we developed is based on a particle system
in which strikes made by the player appear as patterns composed of small
shapes which are the basic visual elements of the display. As the player
makes Ka and Ga strikes on the Bayan controller, particles are rearranged
into lines, circles, cardioids, and other shapes depending on the type and
quality of each strike. The velocity and pitch are mapped to the size, color,
complexity and physical characteristics of the patterns we create.

Once particles have been placed, their continuing motion is
controlled by a vector field which imposes forces on each particle. After a
strike places a form on the screen, the form will break apart and returns to
the background motion. The vector field can also be configured to
respond to the movement and positions of particles. The behavior of the
field is governed by a distribution of ‘cells’ which determine the forces
that will be exerted in their local area, based on the number and

Chapter

7

60606060

distribution of particles in their domain. Through this feedback of cell-
particle dynamics, we obtain behaviors which can mimic real-world
systems. By altering both the physical characteristics of particles and the
specifics of cell-response behaviors, we can use the same system to
produce a variety of effects (see Figure 7.1) .

In addition to effects produced by the different strikes, it is also helpful to
provide a response to the state of the drum itself. Since the Bayan is
responsive to palm pressure on the head of the drum, we visually impart
a sense of increase or decrease in tension on the drumhead through
corresponding compressive or decompressive forces to the particle
systems. 29

Figure 7.1: Different modes of visual feedback.

61616161

The Controls

Table 7.1 describes the controls for the visual system. This graphic
system can be used during performance as another instrument. The one
who controls the visualization can react real-time to changes in mood,
tempo and style as the ETabla is being performed.

KEY ACTION
Spacebar Full screen mode
P Regular window
W Display MIDI History
E Show cell history (for Debugging)
R Change particle type – triangle,

cone, spark, blur, petal
T Change field type – water, fire,

snow, flower, off
Y Change Ga shape
U Change Ka shape
A Trails (doesn’t clear screen)
S Randomize colors

Table 7.1: Showing controls of Visual System

62626262

Music Created with the
ETabla
Thesis Performance

ne of the goals of this project was to make an instrument which
can actually be used to create an audio and visual experience that
expresses the feelings of the performer and enamors the audience.

A performance was held on April 25th, 2002 in Taplin Auditorium,
Princeton University, to premiere the Electronic Tabla to the world.
Princeton undergraduate and graduate students joined faculty members
and alumni in a spectacular performance mixing music from India, Africa
and modern America, with electronic grooves and beats.

The ETabla premiered in a traditional North Indian classical song
playing a Tin Taal which is described in Chapter 2. The ETabla was also
featured in a song with an artist playing the Roland GrooveBox, an
instrument that uses a metronome to keep time. It was a major
accomplishment that the ETabla could keep up with such a rhythmically
precise machine. Another highlight of the concert was the “Dissonance
Ritual”, where the ETabla created atmospheric sound-scapes, triggering
long lasting electronic samples.

 From this thesis performance, the ETabla successfully created a
variety of styles of music, with a many types of musicians. Program notes
are included in Appendix F. A CD of the concert is also included.

Chapter

8

O

63636363

Other Projects using the
ETabla
New Instrument Designs

ith the technology learned from creating the ETabla, I have
developed an array of novel ideas for new controllers for
musical expression. I need to learn how to use two new types of

sensors: Piezo and Accelerometers. Piezo is used to measure changes in
pressure, while accelerometers measure change in rotation. This chapter
will outline the design schematics for these new instruments.

New Instrument Design Schematics

The Electronic Pentatonic Hand Drums (“Pentrix”):

• This instrument has five
drums which can play a
pentatonic scale

• It is played by a musician

who will sit on the floor

• The center circle will collect
all the wires and send all outputs

Chapter

9

W

64646464

• Each drum should be able to fit a parallax circuit board

• Each drum should be designed to have an easily removable drum
head so getting to the inside of the drum is possible

• Technology: Square FSRS, piezo, (maybe long FSRs)

The Electronic “BoomBaZ”:

• This set of five drums will
be played by a musician
who is standing – thus
they should all be around
waist high

• Each drum from bottom to

top will get bigger and
bigger

• These Drums will be used

to play the lower tones,
acting like a bass

• Music Note: These drums

have the option of playing
a pentatonic scale, or
having all 12 tones

• Each drum should be

designed to have an easily
removable drum head so
getting to the inside of the
drum is possible

• Technology: Square FSRS, piezo, (maybe long FSRs)

65656565

The Electronic Dolak:

• Two musicians who sit on the floor

play this drum - one person will
strike both sides of the drum (setting
the rhythm), and the other will strike
the black square on the top of the
drum (setting the tempo, and
warping the sounds).

• One end of the drum is bigger than the other side of the drum, to

represent a low tone and a high tone relatively

• Each drum should be designed to have an easily removable drum
head so getting to the inside of the drum is possible

• Technology: Square FSRS, piezo, long FSRs

The Electric “12toneKit” :

• Has 2 foot pedals
and a snare drum
to achieve drum
kit functionality

• Has 12 tom toms
in configuration of
a piano with
white drums and
black drums, to
signify the
accidentals of the
key of C major

• Music Note: The configuration shown starts on F and ends on F
(F Lydian). This makes it easy for a drummer to hit the tonic
with their right hand, while the left hand and feet play a groove
(beat).

66666666

• The foot pedals for bass drum and high hat are

going to be on the floor (different than a real drum
set where the foot triggers a spring action which
strikes the bass drum with a pedal)

• Each tom must be compatible with a existing drum

hardware. However new ideas for structures to hold
toms are encouraged.

• Each drum should be designed to have an

easily removable drum head so getting to the inside
of the drum is possible

• The Bass drum may act as a Hub for all the wires and

inter-connects of all the drums. The MIDI outputs will also be
located here

• Technology: Square FSRS, piezo, (maybe long FSRs)

The Electronic “DanceMachine”:

• This a large circular pad which can sense
position and velocity of the feet

• The structure must have the ability to be

transported

• A durable material must be used as
humans will jump up and down with their
feet

• Technology: Square FSRs and long FSRs

FSR

67676767

The Electronic Matrix:

• This is a series 5 rows of 12 blocks, based on an
instrument of Harry Partch

• Blocks can be all the same size

• Rack for blocks should organize rows with
ascending height

• Music Note: Can map 12 tones scales with
octaves stacked on each other or map according
to Guitar or Violin neck’s frets

• Technology: Square FSRs, piezo (maybe long
FSRs)

The Electronic Bow:

• This instrument will make sounds when

comes in contact with the ground or
another Electronic Bow

• Two people can play this instrument

together while dancing

• Sticks must encase a circuit board

• Sticks must also be able to have sensors

next to outer edge but with protection
from strikes

• Technology: piezo, or Square FSRs,

maybe Accelerometers for rotation , Wireless

68686868

Conclusion
“Musical performance with entirely new types of computer instruments is

now commonplace, as a result of the availability of inexpensive computing
hardware, of new sensors for measuring physical parameters such as force and
position, and of new software for real-time sound synthesis and manipulation.
Musical interfaces that we construct are influenced greatly by the type of music
we like, the music we set out to make, the instruments we already know how to
play, and the artists we choose to work with, as well as the available sensors,
computers, networks, etc. But the music we create and enable with our new
instruments can be even more greatly influenced by our initial design decisions
and techniques.”30

I have outlined the initial design schematics as well as the process

of creating a new musical controller. I feel the process has defined the end
product, and how the new instrument can be used in a musical context.

Our team successfully created a real-time device for Tabla

performance. The ETabla controller augments the traditional interactions
in various ways. The performer can now choose the sound production,
independent of the physical interaction. Automated teaching feedback
has also become possible. We illustrate this ability by providing
performance-dependent visual feedback. The ETabla was successfully
used to entertain 200 people in an audio-visual extravaganza which
demonstrated the power of computers.

However, this project is not over. There still needs to be

improvements in sound generation and processing speed of the ETabla
controller. Other gizmos such as LEDs to denote pitch and switches to
control drones would also be fun to add. As I begin to create new
electronic instruments and learn more about the emerging technology, the
ETabla will continue to evolve. This Senior Thesis project is just the
beginning of the work of my life.

Chapter

10

69696969

Experiments with Force
Sensing Resistors
Digitizing Force and Position
Human Computer Interface Experiment 1

Experiments on Measuring Position Using an FSR

Materials

! A computer that runs Microsoft Windows
! Programs available at:

http://www.CS.Princeton.EDU/courses/cs436/Lab2/Lab2Code/
! A Long FSR
! A Battery Powered Circuit Board with four-pin connector
! A National Instruments input block
! Two 9-volt Batteries

Procedure

1. Connect the four-pin connector of the long FSR to the circuit
making sure to match the black dots.

2. Connect the output wires of the circuit to the National
Instruments input block by connecting the black wire (ground)
to pin 67 and the red wire (signal) to pin 68

3. Connect the two 9-volt batteries to bias the circuit.

4. Load the program called scope.prj in LabWindows CVI and run
it.

Appendix

A

http://www.cs.princeton.edu/courses/cs436/Lab2/Lab2Code/

70707070

Results & Conclusions

1. What happens as you press on the FSR in various locations?
The higher we press on the FSR, the higher the voltage. The lower
we press on the FSR, the lower the voltage

2. Is the output a function of how hard you press?
No. The FSR is a function of position. However, it can be rewired to
measure both position and force.

3. What is the voltage range of the sensor?

The voltage goes from 0 volts to 9 volts

4. How fast can you tap the sensor and see the effects?
We set the sampling rate at 44100 Hz. We could tap the sensor
approximately 2 times per second and see our results. Once we
went to 3 times a second the output signal was unreadable.

5. What is the effect of changing the sampling rate?
When we lowered the sampling rate, the output response got much
slower with less precision. When the sampling rate was raised, the
output response got much faster and more precise.

6. What kind of signal conditioning circuit is this?

Non-Inverting Amplifier

7. What are the pros and cons of using this circuit?
The advantage of this the non-inverting amplifier is that there is no
conversion necessary to obtain a voltage. The disadvantage of this
signal conditioning circuit is that we are especially sensitive to the
direct output of the sensor so that if physical properties of that
sensor change, or a different sensor is used, we will have to
recalibrate the system.

71717171

Experiments on Measuring Force Using an FSR

Materials

! A computer that runs Microsoft Windows
! Matlab
! Programs available at:

http://www.CS.Princeton.EDU/courses/cs436/Lab2/Lab2Code/
! A Square FSR
! A Battery Powered Circuit Board with four-pin connector
! A National Instruments input block
! Two 9-volt Batteries

Procedure
1. Remove the long FSR and connect the four-pin connector of the square

FSR to the circuit making sure to match the black dots. Answer questions
1 through 4 below.

2. Stop running scope.prj.
3. Launch MATLAB.

4. Load the program called daqstart.prj in LabWindows CVI and run it.
5. Set the number of samples to 1000.

6. Set the sampling rate to 500.

7. While slowly increasing the pressure on the sensor, start the data
collection. Try to linearly increase pressure across the data collection
window, but DO NOT look at the trace while doing it! Have one lab
partner say "go" while another pushes the FSR.

8. Click on the Matlab button. This sends the acquired samples to MATLAB.
In Matlab, execute the plot(cvi_data) command to see the acquired data.
Answer Questions 5 and 6 below.

9. Go back to CVI and acquire 1000 more samples with the sensor at rest on
the table.

10. As before, plot the result in MATLAB.

11. Repeat steps 11 and 12 while simply holding the sensor in your hand, but
applying no pressure.

12. Remove all of the batteries from the signal conditioning circuit.

13. Disconnect the FSR circuit.

http://www.cs.princeton.edu/courses/cs436/Lab2/Lab2Code/

72727272

Results & Conclusions

1. Is the output a function of how hard you press?
The harder you press, the higher the voltage. The weaker you
press the lower the voltage.

2. What is the voltage range of the sensor?

The voltage ranges from 0 volts to 9 volts.

3. How fast can you tap the sensor and see the effects?
We set the sampling rate at 44100 Hz. We could tap the sensor
approximately 8 times per second and see our results.

4. What is the effect of changing the sampling rate?

When we lowered the sampling rate, the output response got
much slower with less precision. When the sampling rate was
raised, the output response got much faster and more precise.

5. What is the relationship between pressure on the sensor and

the voltage output of the circuit?
The relationship of pressure to voltage is not linear. However,
the greater the pressure the greater the voltage output.

6. Write a function in MATLAB to linearize the relationship

between pressure on the sensor and the plotted result.

73737373

Square FSR - voltage vs log (pressure)

Since we are assuming that force increased linearly across the
window, if we plot voltage vs force on a log scale, we obtain a
linear relationship.

Formula Voltage = b e (pressure) , where b is a constant

7. What do you see? How does this relate to the quantization of

the analog to digital converter?

74747474

FSR left still on table

The noise is masked by the FSR in experiments before. Now the
pressure exerted by the computers in the room and other
sources showed up in our graph in digital format. Our graph
shows that there is a sharp peak at 90. It does not show the real
analog curve from start to finish.

75757575

8. Now, what do you see? Why is this different?

FSR held ‘still’ in palm of hand

There are many more peaks on this graph. This is probably the
sound of our heartbeat.

9. Could choosing another signal conditioning circuit eliminate
this?
Yes, use a Single Pole Low Pass Filter.

10. The FSRs plug into a small battery powered circuit board.
What is the purpose of that board?
To achieve signal conditioning circuitry.

11. The large square FSR has a resistor attached to it. Why is this

necessary?
The resistor on the large square FSR acts as a reference voltage.
The long FSR has two resistive films interweaved so it does not
need the extra resistor.

76767676

PBASIC Code
ETabla Basic Stamp Code

Bayan2HS.bs2

Rf var word
Rpos var word
strikeDamp var bit
slapHold var bit
temp var byte
velocity var byte
CS con 13
CLK con 14
DIO_n con 15
config var nib
startB var config.bit0
sglDif var config.bit1
oddSign var config.bit2
msfb var config.bit3
AD0 var word
AD1 var word

BSA con 12 ' High side of FSR Fixed Resistor
BSB con 10 ' Capacitor Pin
BSC con 11 ' Force Wiper of FSR, Other side of Capacitor

BSS con 7
SRf var word ' Slapper Force Variable

loop:

'*** This is for the Slapper
 high BSS
 rctime BSS, 1, SRf

Appendix

B

77777777

' debug ? SRf
 if SRf < 150 then doSlap
 slapHold = 0

'*** This is the linear strip (bender)
'*** Read Force Resistance
 low BSA
 high BSB
 high BSC
 rctime BSC, 1, Rf

'*** Read A/D Channels
 HIGH BSA
 INPUT BSB
 INPUT BSC
 gosub ReadADs

'*** STRIKER variable AD1: The greater the pressure the smaller AD1
'*** AD1 Ranges from 20 to 2100, We will take ones smaller than 1770
if AD1 > 1770 then skipStrike
 '*** Velocity of Striker: 127 loud, 0 soft
 velocity = 127 - (AD1/16)
 'debug ? velocity
 'debug ? strikeDamp
 '*** When hold down striker, strikeDamp = 1, 0 when 1 hit
 if strikeDamp = 1 then doDamp
 '*** Send Controller (176)
 'serout 8, 12, 1, [176, 16, 127]
 '*** Note on (144) -- good
 serout 8, 12, 1, [144, 67, velocity]
 ' Note Off (128)
 serout 8, 12, 1, [128 ,67, 64]

 'debug "serout 8, 12, 1, [144, 30, "
 'debug ? velocity
 '*** Set strikeDamp = 1 so if holding, wont come back into loop until let go
 strikeDamp = 1
 goto strikeOut
 doDamp:
 AD1 = AD1 / 16
 'serout 8, 12, 1, [176, 1, AD1/2 + 64]
 'debug "serout 8, 12, 1, [176, 1, "
 'debug ? (AD1/2 + 64)
 goto strikeOut
skipStrike:
 '*** strikeDamp = 0 when no Strike, or when let go from hold
 strikeDamp = 0

'*** BENDER: Rf is force, AD0 is position

78787878

strikeOut:

'*** If enough force Rf on bender, then do something
 if Rf > 271 then skipPosition
 '*** AD0 varies from 3250(bottom) to 0 (top)
' debug DEC AD0, " ", DEC AD1, cr

 AD0 = 127 - (AD0/31)

 Rf = 127 - (Rf/3)
 'debug ? Rf
 '*** Higher AD0 and Rf the higher the pitch
 'debug "Force = ", DEC Rf, " Position = ", DEC AD0, cr
 if (Rf > AD0) then DomForce
 temp = ((3*AD0)/4) + (Rf/4)
 'debug ? temp
 '*** Pitch Change (224)
 'serout 8, 12, 1, [233, temp, 30]
 'Handsonic needs control change (176) for Bender- - good
 serout 8, 12, 1, [176, 16, temp]
 goto skipPosition
 DomForce:
 temp = ((3*Rf)/4) + (AD0/4)
 'debug ? temp
 '*** Pitch Change (224)
 'serout 8, 12, 1, [233, temp, 30]
 'Handsonic needs control change (176) for Bender- - good
 serout 8, 12, 1, [176, 16, temp]
 goto skipPosition

doSlap:
 if slapHold = 1 then skipPosition
 SRf = 127 - (SRf/2)
 'debug ? SRf
 '*** Send Controller (176)
 'serout 8, 12, 1, [185, 1, 1]
 '*** Note on (144) Ka (71) -good
 serout 8, 12, 1, [144, 71, SRf]
 ' Note Off (128)
 serout 8, 12, 1, [128 ,71, 64]
 'debug "serout 8, 12, 1, [176, 1, 1]", cr
 'debug "serout 8, 12, 1, [144, 44, "
 'debug ? SRf
 '*** Set slapHold = 1 so if holding, wont come back into loop until let go
 slapHold = 1

skipPosition:

goto loop

79797979

ReadADs:
 high DIO_n
 oddsign = 0
 config = config | %1011
 low CS
 shiftout DIO_n, CLK, lsbfirst, [config\4]
 shiftin DIO_n,CLK,msbpost,[AD0\12]
 high CS
 oddsign = 1
 config = config | %1011
 low CS
 shiftout DIO_n, CLK, lsbfirst, [config\4]
 shiftin DIO_n,CLK,msbpost,[AD1\12]
 high CS
return

Dahina2HS.bs2

RfA var word ' Force of Ring Linear FSR
RfB var word ' Force of Index Linear FSR
RposA var word
RposB var word
TitHold var bit
RingDamp var bit
DhiraHold var bit
IndexHold var bit
temp var byte
velocity var byte
CSA con 13
CLKA con 14
DIO_nA con 15
CSB con 5
CLKB con 6
DIO_nB con 7
config var nib
startB var config.bit0
sglDif var config.bit1
oddSign var config.bit2
msfb var config.bit3
ADA0 var word ' Position of Ring Linear FSR
ADA1 var word ' Tira force FSR
ADB0 var word ' Position of Index Linear FSR
ADB1 var word ' Tit force FSR

BSAA con 12 ' High side of FSR Fixed Resistor A

80808080

BSAB con 10 ' Capacitor Pin A
BSAC con 11 ' Force Wiper of FSRA, Other side of Capacitor

BSBA con 4 ' High side of FSR Fixed Resistor B
BSBB con 2 ' Capacitor Pin B
BSBC con 3 ' Force Wiper of FSRA, Other side of Capacitor

loop:

'*** These are the linear FSRs
'*** Read Force Resistance
 low BSAA
 high BSAB
 high BSAC
 rctime BSAC, 1, RfA
 low BSBA
 high BSBB
 high BSBC
 rctime BSBC, 1, RfB
' debug DEC RfA, " ", DEC RfB, cr

'*** Read A/D Channels
 HIGH BSAA
 INPUT BSAB
 INPUT BSAC
 HIGH BSBA
 INPUT BSBB
 INPUT BSBC
 gosub ReadADs

 'debug DEC ADA0, " ", DEC ADA1, " ", DEC ADB0, " ", DEC ADB1, cr
' debug DEC ADB0, " ", DEC ADB1, cr
' debug ? RfA

 '*** DHIRA: If dhira then jump
 if ADA1 < 1000 then doDhira
 DhiraHold = 0

 '*** TIT: If tit then jump
 if ADB1 < 1000 then doTit
 TitHold = 0

'*** RING LINEAR FSR
'*** If enough force RfA on Ring FSR, then do something
 if RfA > 240 then skipRing
 ADA0 = 127 - (ADA0/31)
 RfA = 127 - (RfA/3)

81818181

 'debug DEC ADA0, " ", DEC RfA, cr
 ' '*** Higher ADA0 the more damped the sound
 if (RfA > 100) then DoRingStrike
 RingDamp = 1
 goto skiptoIndex
 DoRingStrike:
 if (RingDamp = 1) then skiptoIndex
 '*** Note on (144)
 serout 8, 12, 1, [144, 70, RfA]
 ' Note Off (128)
 serout 8, 12, 1, [128 ,70, 64]
 'debug "Ti ", DEC ADA0," ", DEC RfA, cr
 RingDamp = 1
 goto SkiptoLoop

skipRing:
 RingDamp = 0

skiptoIndex:

'*** INDEX LINEAR FSR
'*** If enough force RfB on Index FSR, then do something
 if RfB > 240 then skipIndex
 if (IndexHold = 1) then SkiptoLoop
 IndexHold = 1
 ADB0 = (ADB0/31)
 RfB = 127 - (RfB/3)
 'debug DEC ADB0, " ", DEC RfB, cr
 ' '*** Higher ADA0 the more damped the sound
 if (RingDamp = 0) then StrikeTu
 if (ADB0 < 25) then StrikeNa
 '*** Ta Strike
 'debug "Ta ", DEC ADB0, " ", DEC RfB, cr
 '*** Note on (144)
 serout 8, 12, 1, [144, 72, RfB]
 ' Note Off (128)
 serout 8, 12, 1, [128 ,72, 64]
 goto SkiptoLoop
 StrikeNa:
 'debug "Na ", DEC ADB0, " ", DEC RfB, cr
 '*** Send Controller (176)
 serout 8, 12, 1, [176, 17, 76]
 '*** Note on (144)
 serout 8, 12, 1, [144, 74, RfB]
 ' Note Off (128)
 serout 8, 12, 1, [128 ,74, 64]
 goto SkiptoLoop

 StrikeTu:

82828282

 'debug "Tu ", DEC ADB0, " ", DEC RfB, cr
 '*** Note on (144)
 serout 8, 12, 1, [144, 73, RfB]
 ' Note Off (128)
 serout 8, 12, 1, [128 ,73, 64]
 goto SkiptoLoop

skipIndex:
 IndexHold = 0
 goto skiptoLoop

doTit:
 if TitHold = 1 then skiptoLoop
 'debug ? ADA1
 ADB1 = 127 - (ADB1/10)
 'debug ? ADB1
 '*** Send Controller (176)
 serout 8, 12, 1, [176, 17, 96]
 '*** Note on (144)
 serout 8, 12, 1, [144, 74, ADB1]
 ' Note Off (128)
 serout 8, 12, 1, [128 ,74, 64]
 'debug "Tit ", DEC ADB1, cr
 '*** Set TitHold = 1 so if holding, wont come back into loop until let go
 TitHold = 1
 goto skiptoLoop

doDhira:
 if DhiraHold = 1 then skiptoLoop
 'debug ? ADA1
 ADA1 = 127 - (ADA1/10)
 'debug ? ADA1
 '*** Note on (144)
 serout 8, 12, 1, [144, 64, ADA1]
 ' Note Off (128)
 serout 8, 12, 1, [128 ,64, 64]
 'debug "Tira ", DEC ADA1, cr
 '*** Set DhiraHold = 1 so if holding, wont come back into loop until let go
 DhiraHold = 1

skiptoLoop:

goto loop

ReadADs:
 '*** Read AD A
 high DIO_nA
 oddsign = 0
 config = config | %1011

83838383

 low CSA
 shiftout DIO_nA, CLKA, lsbfirst, [config\4]
 shiftin DIO_nA,CLKA,msbpost,[ADA0\12]
 high CSA
 oddsign = 1
 config = config | %1011
 low CSA
 shiftout DIO_nA, CLKA, lsbfirst, [config\4]
 shiftin DIO_nA,CLKA,msbpost,[ADA1\12]
 high CSA

 '*** Read AD B
 high DIO_nB
 oddsign = 0
 config = config | %1011
 low CSB
 shiftout DIO_nB, CLKB, lsbfirst, [config\4]
 shiftin DIO_nB,CLKB,msbpost,[ADB0\12]
 high CSB
 oddsign = 1
 config = config | %1011
 low CSB
 shiftout DIO_nB, CLKB, lsbfirst, [config\4]
 shiftin DIO_nB,CLKB,msbpost,[ADB1\12]
 high CSB

return

Bayan2HS.bsx

'{$STAMP BS2sx}
Rf var word
Rpos var word
strikeDamp var bit
slapHold var bit
temp var byte
velocity var byte
CS con 13
CLK con 14
DIO_n con 15
config var nib
startB var config.bit0
sglDif var config.bit1
oddSign var config.bit2
msfb var config.bit3
AD0 var word
AD1 var word

84848484

BSA con 12 ' High side of FSR Fixed Resistor
BSB con 10 ' Capacitor Pin
BSC con 11 ' Force Wiper of FSR, Other side of Capacitor

BSS con 7
SRf var word ' Slapper Force Variable

loop:

'*** This is for the Slapper
 high BSS
 rctime BSS, 1, SRf
' debug ? SRf
 if SRf < 500 then doSlap
 slapHold = 0

'*** This is the linear strip (bender)
'*** Read Force Resistance
 low BSA
 high BSB
 high BSC
 rctime BSC, 1, Rf

'*** Read A/D Channels
 HIGH BSA
 INPUT BSB
 INPUT BSC
 gosub ReadADs

'*** STRIKER variable AD1: The greater the pressure the smaller AD1
'*** AD1 Ranges from 20 to 2100, We will take ones smaller than 1770

if AD1 > 1770 then skipStrike
 'debug ? strikeDamp
 '*** When hold down striker, strikeDamp = 1, 0 when 1 hit
 if strikeDamp = 1 then doDamp
 '*** Velocity of Striker: 127 loud, 0 soft
 velocity = 127 - (AD1>>4) '*** Optimization: used to be divide by 16
 '*** Note on (144) -- good
 serout 8, 60, 1, [144, 67, velocity]
 ' Note Off (128)
 serout 8, 60, 1, [128 ,67, 64]
 'debug ? velocity
 '*** Set strikeDamp = 1 so if holding, wont come back into loop until let go
 strikeDamp = 1
 goto strikeOut
 doDamp:
 AD1 = AD1 / 16

85858585

 goto strikeOut
skipStrike:
 '*** strikeDamp = 0 when no Strike, or when let go from hold
 strikeDamp = 0

'*** BENDER: Rf is force, AD0 is position
strikeOut:
'*** If enough force Rf on bender, then do something
 if Rf > 230 then skipPosition
 '*** AD0 varies from 3250(bottom) to 0 (top)
' debug DEC AD0, " ", DEC AD1, cr

 AD0 = 127 - (AD0>>5) '*** Optimization: used to be Divide by 32

 Rf = 127 - (Rf/3)
 'debug ? Rf
 '*** Higher AD0 and Rf the higher the pitch
 'debug "Force = ", DEC Rf, " Position = ", DEC AD0, cr
 if (Rf > AD0) then DomForce
 temp = ((3*AD0)>>2) + (Rf>>2) '*** Optimization: used to be Divide by 4
 'debug ? temp
 '*** Note on (144) -- good
 'serout 8, 60, 1, [144, 60, velocity]
 'Handsonic needs polypressure (160) for Bender- - good
 serout 8, 60, 1, [160, 60, (127-temp)]
 goto skipPosition
 DomForce:
 temp = ((3*Rf)>>2) + (AD0>>2) '*** Optimization: used to be Divide by 4
 'debug ? temp
 '*** Note on (144) -- good
 'serout 8, 60, 1, [144, 60, velocity]
 'Handsonic needs polypressure (160) for Bender- - good
 serout 8, 60, 1, [160, 60, (127-temp)]
 goto skipPosition

doSlap:
 if slapHold = 1 then skipPosition
 SRf = 127 - (SRf>>2) '*** Optimization: used to be Divide by 4
 'debug ? SRf
 '*** Note on (144) Ka (71) -good
 serout 8, 60, 1, [144, 71, SRf]
 ' Note Off (128)
 serout 8, 60, 1, [128 ,71, 64]
 '*** Set slapHold = 1 so if holding, wont come back into loop until let go
 slapHold = 1

skipPosition:

goto loop

86868686

ReadADs:
 high DIO_n
 oddsign = 0
 config = config | %1011
 low CS
 shiftout DIO_n, CLK, lsbfirst, [config\4]
 shiftin DIO_n,CLK,msbpost,[AD0\12]
 high CS
 oddsign = 1
 config = config | %1011
 low CS
 shiftout DIO_n, CLK, lsbfirst, [config\4]
 shiftin DIO_n,CLK,msbpost,[AD1\12]
 high CS
return

Dahina2HS.bsx

'{$STAMP BS2sx}
RfA var word ' Force of Ring Linear FSR
RfB var word ' Force of Index Linear FSR
RposA var word
RposB var word
TitHold var bit
RingDamp var bit
DhiraHold var bit
IndexHold var bit
temp var byte
velocity var byte
CSA con 13
CLKA con 14
DIO_nA con 15
CSB con 5
CLKB con 6
DIO_nB con 7
config var nib
startB var config.bit0
sglDif var config.bit1
oddSign var config.bit2
msfb var config.bit3
ADA0 var word ' Position of Ring Linear FSR
ADA1 var word ' Tira force FSR
ADB0 var word ' Position of Index Linear FSR
ADB1 var word ' Tit force FSR

87878787

BSAA con 12 ' High side of FSR Fixed Resistor A
BSAB con 10 ' Capacitor Pin A
BSAC con 11 ' Force Wiper of FSRA, Other side of Capacitor

BSBA con 4 ' High side of FSR Fixed Resistor B
BSBB con 2 ' Capacitor Pin B
BSBC con 3 ' Force Wiper of FSRA, Other side of Capacitor

loop:

'*** These are the linear FSRs
'*** Read Force Resistance
 low BSAA
 high BSAB
 high BSAC
 rctime BSAC, 1, RfA
 low BSBA
 high BSBB
 high BSBC
 rctime BSBC, 1, RfB
' debug DEC RfA, " ", DEC RfB, cr

'*** Read A/D Channels
 HIGH BSAA
 INPUT BSAB
 INPUT BSAC
 HIGH BSBA
 INPUT BSBB
 INPUT BSBC
 gosub ReadADs

 'debug DEC ADA0, " ", DEC ADA1, " ", DEC ADB0, " ", DEC ADB1, cr
' debug DEC ADB0, " ", DEC ADB1, cr
' debug ? RfA

 '*** DHIRA: If dhira then jump
 if ADA1 < 1000 then doDhira
 DhiraHold = 0

 '*** TIT: If tit then jump
 if ADB1 < 1000 then doTit
 TitHold = 0

'*** RING LINEAR FSR
'*** If enough force RfA on Ring FSR, then do something
 if RfA > 500 then skipRing
 RfA = 127 - (RfA>>2) '*** Optimization used to be divide by 4
 'debug ? RfA

88888888

 'debug DEC ADA0, " ", DEC RfA, cr
 ' '*** Higher ADA0 the more damped the sound
 if (RfA > 60) then DoRingStrike
 RingDamp = 1
 goto skiptoIndex
 DoRingStrike:
 if (RingDamp = 1) then skiptoIndex
 '*** Note on (144)
 serout 8, 60, 1, [144, 70, RfA]
 ' Note Off (128)
 serout 8, 60, 1, [128 ,70, 64]
 debug "Ti ", DEC RfA, cr
 RingDamp = 1
 goto SkiptoLoop

skipRing:
 RingDamp = 0

skiptoIndex:

'*** INDEX LINEAR FSR
'*** If enough force RfB on Index FSR, then do something

 if RfB > 500 then skipIndex
 if (IndexHold = 1) then SkiptoLoop
 IndexHold = 1
 ADB0 = (ADB0>>5) '*** Optimization: was divided by 32
 RfB = 127 - (RfB>>2) '*** Optimization: was divide by 4
 'debug ? ADB0
 'debug DEC ADB0, " ", DEC RfB, cr
 ' '*** Higher ADA0 the more damped the sound
 if (ADB0 > 25) then StrikeTu
 debug "Na ", DEC ADB0, " ", DEC RfB, cr
 '*** Send Controller (176)
 serout 8, 60, 1, [176, 17, 96]
 '*** Note on (144)
 serout 8, 60, 1, [144, 74, RfB]
 ' Note Off (128)
 serout 8, 60, 1, [128 ,74, 64]
 goto SkiptoLoop
 StrikeTu:
 debug "Tu ", DEC ADB0, " ", DEC RfB, cr
 '*** Note on (144)
 serout 8, 60, 1, [144, 73, RfB]
 ' Note Off (128)
 serout 8, 60, 1, [128 ,73, 64]
 goto SkiptoLoop

skipIndex:

89898989

 IndexHold = 0
 goto skiptoLoop

doTit:
 if TitHold = 1 then skiptoLoop
 'debug ? ADA1
 ADB1 = 127 - (ADB1/10)
 'debug ? ADB1
 '*** Send Controller (176)
 serout 8, 60, 1, [176, 17, 96]
 '*** Note on (144)
 serout 8, 60, 1, [144, 74, ADB1]
 ' Note Off (128)
 serout 8, 60, 1, [128 ,74, 64]
 debug "Tit ", DEC ADB1, cr
 '*** Set TitHold = 1 so if holding, wont come back into loop until let go
 TitHold = 1
 goto skiptoLoop

doDhira:
 if DhiraHold = 1 then skiptoLoop
 'debug ? ADA1
 ADA1 = 127 - (ADA1/10)
 'debug ? ADA1
 '*** Note on (144)
 serout 8, 60, 1, [144, 64, ADA1]
 ' Note Off (128)
 serout 8, 60, 1, [128 ,64, 64]
 debug "Tira ", DEC ADA1, cr
 '*** Set DhiraHold = 1 so if holding, wont come back into loop until let go
 DhiraHold = 1

skiptoLoop:

goto loop

ReadADs:
 '*** Read AD A
 high DIO_nA
 oddsign = 0
 config = config | %1011
 low CSA
 shiftout DIO_nA, CLKA, lsbfirst, [config\4]
 shiftin DIO_nA,CLKA,msbpost,[ADA0\12]
 high CSA
 oddsign = 1
 config = config | %1011
 low CSA

90909090

 shiftout DIO_nA, CLKA, lsbfirst, [config\4]
 shiftin DIO_nA,CLKA,msbpost,[ADA1\12]
 high CSA

 '*** Read AD B
 high DIO_nB
 oddsign = 0
 config = config | %1011
 low CSB
 shiftout DIO_nB, CLKB, lsbfirst, [config\4]
 shiftin DIO_nB,CLKB,msbpost,[ADB0\12]
 high CSB
 oddsign = 1
 config = config | %1011
 low CSB
 shiftout DIO_nB, CLKB, lsbfirst, [config\4]
 shiftin DIO_nB,CLKB,msbpost,[ADB1\12]
 high CSB
return

Bayan2STK.bsx

'{$STAMP BS2sx}
Rf var word
Rpos var word
strikeDamp var bit
slapHold var bit
temp var byte
velocity var byte
CS con 13
CLK con 14
DIO_n con 15
config var nib
startB var config.bit0
sglDif var config.bit1
oddSign var config.bit2
msfb var config.bit3
AD0 var word
AD1 var word

BSA con 12 ' High side of FSR Fixed Resistor
BSB con 10 ' Capacitor Pin
BSC con 11 ' Force Wiper of FSR, Other side of Capacitor

BSS con 7
SRf var word ' Slapper Force Variable

91919191

loop:

'*** This is for the Slapper
 high BSS
 rctime BSS, 1, SRf
' debug ? SRf
 if SRf < 500 then doSlap
 slapHold = 0

'*** This is the linear strip (bender)
'*** Read Force Resistance
 low BSA
 high BSB
 high BSC
 rctime BSC, 1, Rf

'*** Read A/D Channels
 HIGH BSA
 INPUT BSB
 INPUT BSC
 gosub ReadADs

'*** STRIKER variable AD1: The greater the pressure the smaller AD1
'*** AD1 Ranges from 20 to 2100, We will take ones smaller than 1770

if AD1 > 1770 then skipStrike
 'debug ? strikeDamp
 '*** When hold down striker, strikeDamp = 1, 0 when 1 hit
 if strikeDamp = 1 then doDamp
 '*** Velocity of Striker: 127 loud, 0 soft
 velocity = 127 - (AD1>>4) '*** Optimization: used to be divide by 16
 '*** Note on (144) -- good
 serout 8, 60, 0, [144, 40, velocity]

 'debug ? velocity
 '*** Set strikeDamp = 1 so if holding, wont come back into loop until let go
 strikeDamp = 1
 goto strikeOut
 doDamp:
 AD1 = AD1 / 16
 goto strikeOut
skipStrike:
 '*** strikeDamp = 0 when no Strike, or when let go from hold
 strikeDamp = 0

'*** BENDER: Rf is force, AD0 is position
strikeOut:
'*** If enough force Rf on bender, then do something
 if Rf > 230 then skipPosition

92929292

 '*** AD0 varies from 3250(bottom) to 0 (top)
' debug DEC AD0, " ", DEC AD1, cr

 AD0 = 127 - (AD0>>5) '*** Optimization: used to be Divide by 32

 Rf = 127 - (Rf/3)
 'debug ? Rf
 '*** Higher AD0 and Rf the higher the pitch
 'debug "Force = ", DEC Rf, " Position = ", DEC AD0, cr
 if (Rf > AD0) then DomForce
 temp = ((3*AD0)>>2) + (Rf>>2) '*** Optimization: used to be Divide by 4
 'debug ? temp
 '*** Pitch Change (224)
 'serout 8, 60, 1, [224, temp, 30]
 'Handsonic needs polypressure (160) for Bender- - good
 serout 8, 60, 0, [160, 40, (127-temp)]
 goto skipPosition
 DomForce:
 temp = ((3*Rf)>>2) + (AD0>>2) '*** Optimization: used to be Divide by 4
 'debug ? temp
 '*** Pitch Change (224)
 'serout 8, 12, 1, [224, temp, 30]
 'Handsonic needs polypressure (160) for Bender- - good
 serout 8, 60, 0, [160, 40, (127-temp)]
 goto skipPosition

doSlap:
 if slapHold = 1 then skipPosition
 SRf = 127 - (SRf>>2) '*** Optimization: used to be Divide by 4
 'debug ? SRf
 '*** Note on (144) Ka
 serout 8, 60, 0, [144, 40, SRf]
 '*** Modulation (11)
 serout 8, 60, 0, [11, 127]

 '*** Set slapHold = 1 so if holding, wont come back into loop until let go
 slapHold = 1

skipPosition:

goto loop

ReadADs:
 high DIO_n
 oddsign = 0
 config = config | %1011
 low CS
 shiftout DIO_n, CLK, lsbfirst, [config\4]

93939393

 shiftin DIO_n,CLK,msbpost,[AD0\12]
 high CS
 oddsign = 1
 config = config | %1011
 low CS
 shiftout DIO_n, CLK, lsbfirst, [config\4]
 shiftin DIO_n,CLK,msbpost,[AD1\12]
 high CS
return

Dahina2STK.bsx

'{$STAMP BS2sx}
RfA var word ' Force of Ring Linear FSR
RfB var word ' Force of Index Linear FSR
RposA var word
RposB var word
TitHold var bit
RingDamp var bit
DhiraHold var bit
IndexHold var bit
temp var byte
velocity var byte
CSA con 13
CLKA con 14
DIO_nA con 15
CSB con 5
CLKB con 6
DIO_nB con 7
config var nib
startB var config.bit0
sglDif var config.bit1
oddSign var config.bit2
msfb var config.bit3
ADA0 var word ' Position of Ring Linear FSR
ADA1 var word ' Tira force FSR
ADB0 var word ' Position of Index Linear FSR
ADB1 var word ' Tit force FSR

BSAA con 12 ' High side of FSR Fixed Resistor A
BSAB con 10 ' Capacitor Pin A
BSAC con 11 ' Force Wiper of FSRA, Other side of Capacitor

BSBA con 4 ' High side of FSR Fixed Resistor B
BSBB con 2 ' Capacitor Pin B
BSBC con 3 ' Force Wiper of FSRA, Other side of Capacitor

94949494

loop:

'*** These are the linear FSRs
'*** Read Force Resistance
 low BSAA
 high BSAB
 high BSAC
 rctime BSAC, 1, RfA
 low BSBA
 high BSBB
 high BSBC
 rctime BSBC, 1, RfB
' debug DEC RfA, " ", DEC RfB, cr

'*** Read A/D Channels
 HIGH BSAA
 INPUT BSAB
 INPUT BSAC
 HIGH BSBA
 INPUT BSBB
 INPUT BSBC
 gosub ReadADs

 'debug DEC ADA0, " ", DEC ADA1, " ", DEC ADB0, " ", DEC ADB1, cr
' debug DEC ADB0, " ", DEC ADB1, cr
' debug ? RfA

 '*** DHIRA: If dhira then jump
 if ADA1 < 1000 then doDhira
 DhiraHold = 0

 '*** TIT: If tit then jump
 if ADB1 < 1000 then doTit
 TitHold = 0

'*** RING LINEAR FSR
'*** If enough force RfA on Ring FSR, then do something
 if RfA > 500 then skipRing
 RfA = 127 - (RfA>>2) '*** Optimization used to be divide by 4
 'debug ? RfA
 'debug DEC ADA0, " ", DEC RfA, cr
 ' '*** Higher ADA0 the more damped the sound
 if (RfA > 60) then DoRingStrike
 RingDamp = 1
 goto skiptoIndex
 DoRingStrike:
 if (RingDamp = 1) then skiptoIndex

95959595

 '*** Send Controller (176)
 serout 8, 60, 1, [176, 17, 96]
 '*** ModWheel (1)
 serout 8, 60, 1, [1, (127-ADA0)]
 '*** Note on (144)
 serout 8, 60, 1, [144, 70, RfA]
 'debug "Ti ", DEC RfA, cr
 RingDamp = 1
 goto SkiptoLoop

skipRing:
 RingDamp = 0

skiptoIndex:

'*** INDEX LINEAR FSR
'*** If enough force RfB on Index FSR, then do something

 if RfB > 500 then skipIndex
 if (IndexHold = 1) then SkiptoLoop
 IndexHold = 1
 ADB0 = (ADB0>>5) '*** Optimization: was divided by 32
 RfB = 127 - (RfB>>2) '*** Optimization: was divide by 4
 'debug ? ADB0
 'debug DEC ADB0, " ", DEC RfB, cr
 ' '*** Higher ADA0 the more damped the sound
 '*** Send Controller (176)
 serout 8, 60, 1, [176, 17, 96]
 '*** ModWheel (1)
 serout 8, 60, 1, [1, (127-ADB0)]
debug ? 127 -ADB0
 '*** Note on (144)
 serout 8, 60, 1, [144, 70, RfB]
 goto SkiptoLoop

skipIndex:
 IndexHold = 0
 goto skiptoLoop

doTit:
 if TitHold = 1 then skiptoLoop
 'debug ? ADA1
 ADB1 = 127 - (ADB1/10)
 'debug ? ADB1
 '*** Send Controller (176)
 serout 8, 60, 1, [176, 17, 96]
 '*** Note on (144)
 serout 8, 60, 1, [144, 74, ADB1]

96969696

 ' Note Off (128)
 serout 8, 60, 1, [128 ,74, 64]
 debug "Tit ", DEC ADB1, cr
 '*** Set TitHold = 1 so if holding, wont come back into loop until let go
 TitHold = 1
 goto skiptoLoop

doDhira:
 if DhiraHold = 1 then skiptoLoop
 'debug ? ADA1
 ADA1 = 127 - (ADA1/10)
 'debug ? ADA1
 '*** Note on (144)
 serout 8, 60, 1, [144, 64, ADA1]
 ' Note Off (128)
 serout 8, 60, 1, [128 ,64, 64]
 debug "Tira ", DEC ADA1, cr
 '*** Set DhiraHold = 1 so if holding, wont come back into loop until let go
 DhiraHold = 1

skiptoLoop:

goto loop

ReadADs:
 '*** Read AD A
 high DIO_nA
 oddsign = 0
 config = config | %1011
 low CSA
 shiftout DIO_nA, CLKA, lsbfirst, [config\4]
 shiftin DIO_nA,CLKA,msbpost,[ADA0\12]
 high CSA
 oddsign = 1
 config = config | %1011
 low CSA
 shiftout DIO_nA, CLKA, lsbfirst, [config\4]
 shiftin DIO_nA,CLKA,msbpost,[ADA1\12]
 high CSA

 '*** Read AD B
 high DIO_nB
 oddsign = 0
 config = config | %1011
 low CSB
 shiftout DIO_nB, CLKB, lsbfirst, [config\4]
 shiftin DIO_nB,CLKB,msbpost,[ADB0\12]
 high CSB

97979797

 oddsign = 1
 config = config | %1011
 low CSB
 shiftout DIO_nB, CLKB, lsbfirst, [config\4]
 shiftin DIO_nB,CLKB,msbpost,[ADB1\12]
 high CSB
return

98989898

MATLAB Code used for
Sound Analysis
Modal Analysis Programming Software

myFFT.m

% This matlab program creates a FFT of frame of a soundfile
%
% myFFT(infileName, fs)
%
% infileName : A .wav file
% fs : sampling frequency
%
% ex. array = myFFT('new-B.wav', 44100);
%
% Ajay Kapur, January 5, 2001

function array = myFFT(infileName, fs)

% Initialize Variables
winsize = 1024;
fftSize = 1024;

soundfile1 = wavread(infileName); % get sound file
sound(soundfile1, fs); % play sound

% find size of soundfile
k1 = whos('soundfile1');
soundsize = k1.size(1);

% remove DC offset
temp = mean(soundfile1);

Appendix

C

99999999

soundfile1 = soundfile1 - temp;
s = soundfile1(1:winsize-1);
s = abs(fft(s, fftSize)); % fft of s

plot(s(1:512,:));
title('Graph of FFT of first frame of sound file');
xlabel('Frequency (bins)');
ylabel('Amplitude');

Spectrogram1.m

% This matlab program creates a 3D spectogram of a STFT of a given .wav file
%
% Spectrogram1(infileName, fs, type)
%
% infileName : A .wav file
% fs : sampling frequency
% type : 'Log' for Logrithmic, 'Lin' for Linear
%
% ex. array = Spectrogram1('new-B.wav', 44100, 'Log');
%
% Ajay Kapur, January 6, 2002

function array = Spectrogram1(infileName, fs, type)

% Initialize Variables
winsize = 1024;
fftSize = 1024;
hopsize = winsize*.5; % set hopsize to 50% of winsize

soundfile1 = wavread(infileName); % get sound file
sound(soundfile1, fs); % play sound

% find size of soundfile
k1 = whos('soundfile1');
soundsize = k1.size(1);

% remove DC offset
temp = mean(soundfile1);
soundfile1 = soundfile1 - temp;

% pre-initialize variables before loop
pos = 1;
frameIndex = 1;

while (pos+winsize) < soundsize

100100100100

 s = soundfile1(pos:pos+winsize-1);
 s = abs(fft(s, fftSize)); % fft of s
 s = s(1:fftSize/2); % s from 0 to Nyquist frequency
 sLog = log(s); % take log of s
 if type == 'Log'
 array(frameIndex, :) = sLog'; % put sLog into 3d array with index frameIndex
 else
 array(frameIndex, :) = s'; % put s into 3d array with index frameIndex
 end
 pos = pos + hopsize; % increment pos
 frameIndex = frameIndex + 1; % increment frameIndex
end

if type == 'Log' % print out Logrithmic Spectrograms with titiles
 waterfall(array), title('Logrithmic Spectogram'); %create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
else % print out Linear Spectrograms with titles
 waterfall(array), title('Linear Spectogram'); %create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
end

Spectrogram2.m

% This matlab program creates a 3D spectogram of a STFT, and then splits it up
% into 3 other AVERAGE graphs: Low, Mid, High for better analysis
%
% Spectrogram2(infileName, fs, type)
%
% infileName : A .wav file
% fs : sampling frequency
% type : 'Log' for Logrithmic, 'Lin' for Linear
%
% ex. array = Spectrogram2('new-B.wav', 44100, 'Log');
%
% Ajay Kapur, January 7, 2001

function array = Spectrogram2(infileName, fs, type)

% Initialize Variables
winsize = 1024;
fftSize = 1024;
hopsize = winsize*.5; % set hopsize to 50% of winsize

101101101101

soundfile1 = wavread(infileName); % get sound file
sound(soundfile1, fs); % play sound

% find size of soundfile
k1 = whos('soundfile1');
soundsize = k1.size(1);

% remove DC offset
temp = mean(soundfile1);
soundfile1 = soundfile1 - temp;

% pre-initialize variables before loop
pos = 1;
frameIndex = 1;

while (pos+winsize) < soundsize
 s = soundfile1(pos:pos+winsize-1);
 s = abs(fft(s, fftSize)); % fft of s
 s = s(1:fftSize/2); % s from 0 to Nyquist frequency
 sLog = log(s); % take log of s
 if type == 'Log'
 array(frameIndex, :) = sLog'; % put sLog into 3d array with index frameIndex
 else
 array(frameIndex, :) = s'; % put s into 3d array with index frameIndex
 end
 pos = pos + hopsize; % increment pos
 frameIndex = frameIndex + 1; % increment frameIndex
end

% Initialize Variables before taking Average and spliting Spectrogram into 3 Arrays
k= 10; % k is the number of frames we are going to average together
frameIndex2 = 1;
pos2 = 1;

while pos2 < frameIndex

 temp = 0;
 for i=1:k % get average for k frames
 temp = temp + array(pos2, :);
 pos2 = pos2+1;
 end
 temp = temp/k;

 arrayL(frameIndex2, :) = temp(1:floor(length(temp)/3)); % low array
 arrayM(frameIndex2, :) = temp(floor(length(temp)/3):2*floor(length(temp)/3)); % mid
array
 arrayH(frameIndex2, :) = temp(2*floor(length(temp)/3):length(temp)); % high array

 frameIndex2 = frameIndex2+1; % increment

102102102102

end

if type == 'Log' % print out Logrithmic Spectrograms with titiles
 waterfall(array), title('Logrithmic Spectogram'); %create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
 figure;
 waterfall(arrayL), title('Logrithmic Spectogram of Low Frequency'); % create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
 figure;
 waterfall(arrayM), title('Logrithmic Spectogram of Mid Frequency'); % create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
 figure;
 waterfall(arrayH), title('Logrithmic Spectogram of High Frequency'); % create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
else % print out Linear Spectrograms with titles
 waterfall(array), title('Linear Spectogram'); %create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
 figure;
 waterfall(arrayL), title('Linear Spectogram of Low Frequency'); % create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
 figure;
 waterfall(arrayM), title('Linear Spectogram of Mid Frequency'); % create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
 figure;
 waterfall(arrayH), title('Linear Spectogram of High Frequency'); % create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
end

103103103103

Spectrogram3.m

% This matlab program creates a 3D PEAK spectogram of a STFT.
%
% Note: This program calls hillclimbing.m which finds the max values of the fft.
%
% Spectrogram3(infileName, fs, accuracy)
%
% infileName : A .wav file
% fs : sampling frequency
% accuracy : determines how precise the peak search is
%
% ex. array = Spectrogram3('new-B.wav', 44100, 40);
%
% Ajay Kapur, January 9, 2001

function array = Spectrogram3(infileName, fs, accuracy)

% Initialize Variables
winsize = 1024;
fftSize = 1024;
hopsize = winsize*.5; % set hopsize to 50% of winsize

soundfile1 = wavread(infileName); % get sound file
sound(soundfile1, fs); % play sound

% find size of soundfile
k1 = whos('soundfile1');
soundsize = k1.size(1);

% remove DC offset
temp = mean(soundfile1);
soundfile1 = soundfile1 - temp;

% pre-initialize variables before loop
pos = 1;
frameIndex = 1;

while (pos+winsize) < soundsize
 s = soundfile1(pos:pos+winsize-1);
 s = abs(fft(s, fftSize)); % fft of s
 s = s(1:fftSize/2); % s from 0 to Nyquist frequency
 sLog = log(s); % take log of s and store in sLog
 array(frameIndex, :) = s'; % put s into 3d array with index frameIndex
 arrayLog(frameIndex, :) = sLog'; % put sLog into 3d array with index frameIndex

 % do peak search %

104104104104

 % Initialize varaiables before peak search
 negMagThresh = max(array(frameIndex,:))/accuracy; % inputs into HillClimbing
function
 posMagThresh = max(array(frameIndex,:))/accuracy; % inputs into HillClimbing
function

 minLogValue = min(arrayLog(frameIndex, :)); % find min value in log data
 arrayLog(frameIndex, :) = arrayLog(frameIndex, :) + abs(minLogValue); % shift by min
value up, and then shift down again
 [peakBinl, peakMagl] = hillClimbing(arrayLog(frameIndex,:), negMagThresh,
posMagThresh);
 arrayLog(frameIndex, :) = arrayLog(frameIndex, :) - abs(minLogValue); % shift back
down
 LogPeakArray(frameIndex, :) = zeros(1,fftSize/2); % initialize LogpeakArray

 for (i=1:length(peakBinl))
 LogPeakArray(frameIndex, peakBinl(i)) = peakMagl(i); % create 3d array of peaks
for log graph
 end
 [peakBin, peakMag] = hillClimbing(array(frameIndex,:), negMagThresh,
posMagThresh);

 PeakArray(frameIndex, :) = zeros(1,fftSize/2); % initialize peakArray

 for (i=1:length(peakBin))
 PeakArray(frameIndex, peakBin(i)) = peakMag(i); % create 3d array of peaks for
linear graph

 end

 pos = pos + hopsize; % increment pos
 frameIndex = frameIndex + 1; % increment frameIndex
end

waterfall(PeakArray), title('Linear graph showing Peaks of Spectrogram'); % create 3d
graph
xlabel('Frequency (Bins)');
ylabel('Time (Number of Frames)')
zlabel('Amplitude');
figure;
waterfall(LogPeakArray), title('Logrithmic graph showing Peaks of Spectrogram'); %
create 3d graph
xlabel('Frequency (Bins)');
ylabel('Time (Number of Frames)')
zlabel('Amplitude');

105105105105

hillClimbing.m

% This function finds peaks in FFT spectrum
%
% function [peakBin, peakMag] = hillClimbing(x, negMagThresh, posMagThresh)
% [peakBin, peakMag] = hillClimbing(x, negMagThresh, posMagThresh)
%
% returns arrays peakBin[] and peakMag[]
%

function [peakBin, peakMag] = hillClimbing(x, negMagThresh, posMagThresh)

xLen = length(x);
maxMag = max(x);
tempPeakMag = min(x); %0
foundPeak = 0;
peakCount = 1;

i = 1;
outOfBound = 0;
slope = x(i+1)-x(i);

x(512)
while 1%i < xLen-1
 % positive slope start
 % ---------------------------
 while slope > 0

 i = i+1;
 if i > xLen-1 % out of bound: > analysis window
 return;
 end

 slope = x(i+1)-x(i);

 if foundPeak == 1
 if x(i) > tempPosMagThreshOffset + posMagThresh;
 % reset, new hill to climb
 tempPeakMag = min(x); %0
 foundPeak = 0;
 end
 end

 end % positive slope end

 % temporarily store peak candidate
 if x(i) > tempPeakMag
 tempPeakBin = i;

106106106106

 tempPeakMag = x(i);
 end

 % negative slope start
 % ----------------------------
 while slope <=0

 if foundPeak == 0
 if tempPeakMag - x(i) > negMagThresh
 foundPeak = 1;
 peakBin(peakCount) = tempPeakBin;
 peakMag(peakCount) = tempPeakMag;
 peakCount = peakCount+1;
 end
 end

 i = i+1;
 if i > xLen-1 % out of bound: > analysis window
 return;
 end

 slope = x(i+1)-x(i);

 end % negative slope end

 % found peak
 % -----------------------------
 if foundPeak == 1
 tempPosMagThreshOffset = x(i);
 end
end

Spectrogram4.m

% This matlab program creates a 3D PEAK spectogram of a STFT.
%
% Note: This program calls sixpeaks.m which finds the max values of the fft.
%
% Spectrogram4(infileName, fs)
%
% infileName : A .wav file
% fs : sampling frequency
%
% ex. array = Spectrogram4('new-B.wav', 44100);
%
% Ajay Kapur, January 9, 2001

function array = Spectrogram4(infileName, fs)

107107107107

% Initialize Variables
winsize = 1024;
fftSize = 1024;
hopsize = winsize*.5; % set hopsize to 50% of winsize

soundfile1 = wavread(infileName); % get sound file
sound(soundfile1, fs); % play sound

% find size of soundfile
k1 = whos('soundfile1');
soundsize = k1.size(1);

% remove DC offset
temp = mean(soundfile1);
soundfile1 = soundfile1 - temp;

% pre-initialize variables before loop
pos = 1;
frameIndex = 1;

while (pos+winsize) < soundsize
 s = soundfile1(pos:pos+winsize-1);
 s = abs(fft(s, fftSize)); % fft of s
 s = s(1:fftSize/2); % s from 0 to Nyquist frequency
 sLog = log(s); % take log of s and store in sLog
 array(frameIndex, :) = s'; % put s into 3d array with index frameIndex
 arrayLog(frameIndex, :) = sLog'; % put sLog into 3d array with index frameIndex

 % do peak search %

 % Initialize varaiables before peak search

 minLogValue = min(arrayLog(frameIndex, :)); % find min value in log data
 arrayLog(frameIndex, :) = arrayLog(frameIndex, :) + abs(minLogValue); % shift by min
value up, and then shift down again
 [peakBinl, peakMagl] = sixpeaks(arrayLog(frameIndex,:));
 arrayLog(frameIndex, :) = arrayLog(frameIndex, :) - abs(minLogValue); % shift back
down
 LogPeakArray(frameIndex, :) = zeros(1,fftSize/2); % initialize LogpeakArray

 for (i=1:length(peakBinl))
 LogPeakArray(frameIndex, peakBinl(i)) = peakMagl(i); % create 3d array of peaks
for log graph
 end

 [peakBin, peakMag] = sixpeaks(array(frameIndex,:));

 PeakArray(frameIndex, :) = zeros(1,fftSize/2); % initialize peakArray

108108108108

 for (i=1:length(peakBin))
 PeakArray(frameIndex, peakBin(i)) = peakMag(i); % create 3d array of peaks for
linear graph
 end

 % print out Linear peaks %
 fprintf('%f\t %f\t %f\t %f\t %f\t %f\t \n', ((fs*peakBin(1))/fftSize),
((fs*peakBin(2))/fftSize), ((fs*peakBin(3))/fftSize), ((fs*peakBin(4))/fftSize),
((fs*peakBin(5))/fftSize), ((fs*peakBin(6))/fftSize));

 pos = pos + hopsize; % increment pos
 frameIndex = frameIndex + 1; % increment frameIndex
end

waterfall(PeakArray), title('Linear graph showing Peaks of Spectrogram'); % create 3d
graph
xlabel('Frequency (Bins)');
ylabel('Time (Number of Frames)')
zlabel('Amplitude');
figure;
waterfall(LogPeakArray), title('Logrithmic graph showing Peaks of Spectrogram'); %
create 3d graph
xlabel('Frequency (Bins)');
ylabel('Time (Number of Frames)')
zlabel('Amplitude');

sixpeaks.m

% This function finds peaks in FFT spectrum by finding the six highest values in the
% FFT array.
%
% function [peakBin, peakMag] = hillClimbing(x)
% [peakBin, peakMag] = hillClimbing(x)
%
% returns arrays peakBin[] and peakMag[]
%

function [peakBin, peakMag] = hillClimbing(x)
 temp = x; % store x in temp
 xlen = length(x); % store length of x
 minx = min(x); % minimum value in x

 % Find 6 peaks
 for (j = 1:6)
 max = minx;

109109109109

 for (i = 1:xlen)
 if (temp(i) > max)
 max = temp(i);
 tempPeakBin = i;
 tempPeakMag = temp(i);
 end
 end
 % Zero out peak
 temp(tempPeakBin) = minx;
 % Zero out peak in negative direction
 slopechange = 0;
 i = 0;
 while (slopechange == 0)
 if (tempPeakBin-i-1 > 0)

 u = temp(tempPeakBin-i);
 d = temp(tempPeakBin-i-1);
 if ((u-d)>0)
 temp(tempPeakBin-i-1) = minx;
 else
 slopechange = 1;
 end
 i = i + 1;
 else
 slopechange = 1;
 end
 end

 % Zero out peak in positive direction
 slopechange = 0;
 i = 0;
 while (slopechange == 0)
 if (tempPeakBin+i+1 < xlen)
 u = temp(tempPeakBin+i);
 d = temp(tempPeakBin+i+1);
 if ((u-d)>0)
 temp(tempPeakBin+i+1) = minx;
 else
 slopechange = 1;
 end
 i = i + 1;
 else
 slopechange = 1;
 end
 end
 peakBin(j) = tempPeakBin;
 peakMag(j) = tempPeakMag;
 end
end

110110110110

Spectrogram5.m

% This matlab program creates an AVERAGE 3D PEAK spectogram of a STFT.
% It also prints out the N highest peaks for a FFT over time.
% Note: This program calls peaks.m which finds the max values of the fft.
%
% Spectrogram5(infileName, fs, type, k, numPeaks, fftSize, sorter)
%
% infileName : A .wav file
% fs : sampling frequency
% type : 'Log' for Logrithmic, 'Lin' for Linear
% k : the number of frames we are going to average together
% numPeaks : Number of Peaks to analyze
% fftsize : fftSize (number of bins)
% sorter : 'Mag' will sort peaks by Magnitude, 'Bin' will sort peaks by bins
%
% ex. array = Spectrogram5('new-B.wav', 44100, 'Log', 10, 6, 1024, 'Bin');
%
% Ajay Kapur, January 10, 2001

function array = Spectrogram5(infileName, fs, type, k, numPeaks, fftSize, sorter)

% Initialize Variables

winsize = fftSize;
hopsize = winsize*.5; % set hopsize to 50% of winsize

soundfile1 = wavread(infileName); % get sound file
sound(soundfile1, fs); % play sound

% find size of soundfile
k1 = whos('soundfile1');
soundsize = k1.size(1);

% remove DC offset
temp = mean(soundfile1);
soundfile1 = soundfile1 - temp;

% pre-initialize variables before loop
pos = 1;
frameIndex = 1;

while (pos+winsize) < soundsize
 s = soundfile1(pos:pos+winsize-1);
 s = abs(fft(s, fftSize)); % fft of s
 s = s(1:fftSize/2); % s from 0 to Nyquist frequency
 sLog = log(s); % take log of s and store in sLog
 array(frameIndex, :) = s'; % put s into 3d array with index frameIndex

111111111111

 arrayLog(frameIndex, :) = sLog'; % put sLog into 3d array with index frameIndex
 pos = pos + hopsize; % increment pos
 frameIndex = frameIndex + 1; % increment frameIndex
end

% AVERAGE SIGNAL

% Initialize Variables before taking Average
frameIndex2 = 1;
pos2 = 1;

while pos2 < frameIndex
 temp = 0;
 temp2 = 0;

 for i=1:k % get average for k frames
 temp = temp + array(pos2, :);
 temp2 = temp2 + arrayLog(pos2, :);
 pos2 = pos2+1;
 end

 temp = temp/k;
 temp2 = temp2/k;

 AvgArray(frameIndex2, :) = temp(1:(length(temp)));
 AvgLogArray(frameIndex2, :) = temp(1:(length(temp2)));

 frameIndex2 = frameIndex2+1; % increment
end

frameIndex2 = frameIndex2 -1; %decrement so can use for upperbound

% do peak search %
pos3 = 1;
while pos3 < frameIndex2
 % Initialize varaiables before peak search

 minLogValue = min(AvgLogArray(pos3, :)); % find min value in log data
 AvgLogArray(pos3, :) = AvgLogArray(pos3, :) + abs(minLogValue); % shift by min
value up, and then shift down again
 [peakBinl, peakMagl] = peaks(AvgLogArray(pos3,:), sorter, numPeaks);
 AvgLogArray(pos3, :) = AvgLogArray(pos3, :) - abs(minLogValue); % shift back down
 LogPeakArray(pos3, :) = zeros(1,fftSize/2); % initialize LogpeakArray

 for (i=1:length(peakBinl))
 LogPeakArray(pos3, peakBinl(i)) = peakMagl(i); % create 3d array of peaks for log
graph (Magnitude)
 end

112112112112

 for (i=1:length(peakBinl))
 lPeakArray2(pos3, i) = peakBinl(i); % create 3d array of peaks for log graph (bins)
 end

 [peakBin, peakMag] = peaks(AvgArray(pos3,:), sorter, numPeaks);

 PeakArray(pos3, :) = zeros(1,fftSize/2); % initialize peakArray
 for (i=1:length(peakBin))
 PeakArray(pos3, peakBin(i)) = peakMag(i); % create 3d array of peaks for linear
graph (magnitude)
 end

 for (i=1:length(peakBin))
 PeakArray2(pos3, i) = peakBin(i); % create 3d array of peaks for linear graph (bins)
 end
 pos3 = pos3 + 1;
end
pos3 = pos3 -1; % decrement and use for printing

% PRINTING AND GRAPHING

if type == 'Lin'
 % print out Linear peaks %
 for (i=1:pos3)
 for(j=1:numPeaks)
 fprintf('%f\t', (fs*PeakArray2(i, j))/fftSize);
 end
 fprintf('\n');
 end
 waterfall(PeakArray(:,:,:)), title('Linear graph showing Peaks of Spectrogram'); % create
3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
end
if type == 'Log'
 % print out Log peaks %
 for (i=1:pos3)
 for(j=1:numPeaks)
 fprintf('%f\t', (fs*lPeakArray2(i, j))/fftSize);
 end
 fprintf('\n');
 end
 waterfall(LogPeakArray(:,1:15,:)), title('Logrithmic graph showing Peaks of
Spectrogram'); % create 3d graph
 xlabel('Frequency (Bins)');
 ylabel('Time (Number of Frames)')
 zlabel('Amplitude');
end

113113113113

peaks.m

% This function finds peaks in FFT spectrum by finding the six highest values in the
% FFT array.
%
% function [peakBin, peakMag] = hillClimbing(x, sorter, numPeaks)
% [peakBin, peakMag] = hillClimbing(x)
%
% returns arrays peakBin[] and peakMag[]
%

function [peakBin, peakMag] = hillClimbing(x, sorter, numPeaks)

 temp = x; % store x in temp

 xlen = length(x); % store length of x
 minx = min(x); % minimum value in x

 %plot(x);
 %figure;
 % Find 6 peaks
 for (j = 1:numPeaks)
 max = minx; % max is max amplitude
 for (i = 1:xlen)
 if (temp(i) > max)
 max = temp(i);
 tempPeakBin = i;
 tempPeakMag = temp(i);
 end
 %temp(i)
 end
 % Zero out peak
 temp(tempPeakBin) = minx;
 % Zero out peak in negative direction
 slopechange = 0;
 i = 0;
 while (slopechange == 0)
 if (tempPeakBin-i-1 > 0)

 u = temp(tempPeakBin-i);
 d = temp(tempPeakBin-i-1);
 if ((u-d)>0)
 temp(tempPeakBin-i-1) = minx;
 else
 slopechange = 1;
 end
 i = i + 1;
 else

114114114114

 slopechange = 1;
 end
 end

 % Zero out peak in positive direction
 slopechange = 0;
 i = 0;
 while (slopechange == 0)
 if (tempPeakBin+i+1 < xlen)
 u = temp(tempPeakBin+i);
 d = temp(tempPeakBin+i+1);
 if ((u-d)>0)
 temp(tempPeakBin+i+1) = minx;
 else
 slopechange = 1;
 end
 i = i + 1;
 else
 slopechange = 1;
 end
 end

 peakBin(j) = tempPeakBin;
 peakMag(j) = tempPeakMag;
 end

 if sorter == 'Bin'
 % sort the Bins in ascending order using bubble sort
 for (i=1:numPeaks)
 for(j=1:numPeaks-i)
 if(peakBin(j+1) < peakBin(j))
 tempB = peakBin(j);
 tempM = peakMag(j);
 peakBin(j) = peakBin(j+1);
 peakMag(j) = peakMag(j+1);
 peakBin(j+1) = tempB;
 peakMag(j+1) = tempM;
 end
 end
 end
 end

end

115115115115

MATLAB Code used for
Sound Simulation
Simulating a Ga stroke

BayanSimulator2.m

% This matlab program simulates the Bayan sound of a Tabla using the Plucked String
Model.
% Given the program a starting pitch and an ending pitch and it will morph
% between the two!!!!
%
% BayanSimulator2(StartfreqHz,EndfreqHz, iterations, fs)
%
% StartfreqHz : frequency in Hz of beginning tone (rounding will occur)
% EndfreqHz : frequency in Hz of end tone (rounding will occur)
% iterations : duration of sound file
% fs : sampling frequency
%
% ex. signal = BayanSimulator2(150, 300, 10000, 44100)
%
% Ajay Kapur, May 11, 2001

function signal = BayanSimulator2(StartfreqHz,EndfreqHz, iterations, fs)

startN = fs/StartfreqHz; % Actual delay time
startN = floor(startN); % round floor down to an integer

endN = fs/EndfreqHz; % Actual delay time
endN = floor(endN); % round floor down to an integer

% See which N is bigger, StartN or endN

Appendix

D

116116116116

if startN > endN
 N = startN; % N will be used to allocate space
 diff = startN - endN; % diff will be used for breaking apart iterations
else
 N = endN; % N will be used to allocate space
 diff = endN - startN; % diff will be used for breaking apart iterations
end

duration = (1000*iterations/fs); % duration is length of sample (msec)

% x(n): Create noise (length depends on fs/freqHz) NOT ITERATIONS!!!
x = 2*rand(1, N); % fill x with random numbers
x = x- mean(x); % take away DC, signal now between -1 and 1

% y(n): Create noise (length depends on iterations)
y = [zeros(1, N+1)]; % fill y with 0's from 1 to N+1

% x(n): pad with zeros
if iterations > length(x)
 d = iterations - length(x);
 x = [x zeros(1, d)]; % add zeros after original x
end

%%%%%%%%%%%% FILTERING %%%%%%%%%%%%

% initialize variables before Filtering
temp = 0;
signal = 0;
lengthYoffset = length(y)-1;
N = startN;
for j = 1: diff
 % When j == 1 only !!!!
 if j == 1
 b = iterations/(diff);
 b = floor(b); % indixies must be integer values
 for i = 1 : b
 i = floor(i);
 temp = x(i)+ (.5)*(y(N)+y(N+1)); % This line implements the filter function
 y = [temp, y(1:lengthYoffset)]; % update y with temp
 signal = [signal temp]; % create signal
 end % for loop
 else
 a = ((j-1)*iterations)/diff;
 b = (j*iterations)/diff;
 a = floor(a); % indixies must be integer values
 b = floor(b); % indixies must be integer values
 for i = a:b
 temp = x(i)+ (.5)*(y(N)+y(N+1)); % This line implements the filter function

117117117117

 y = [temp, y(1:lengthYoffset)]; % update y with temp
 signal = [signal temp]; % create signal
 end % for loop
 end % if/else

 % adjust N value
 if startN > endN
 N = startN - j; % decrease N gradually by a constant j from initial value StartN to
endN
 else
 N = startN + j; % increase N gradually by a constant j from initial value StartN to
endN
 end
end

%%%%%%%%ENVELOPE%%%%%%%%%

% Initialize Variables

amplitude = 1.0; % this is the amplitude of the attack
times = [.1 .1 .7 .1]; % this array holds the length of attack, decay, sustain, release

dur = length(signal);
attack = times(1)*dur; % attack time
decay = times(2)*dur; % decay time
sustain = times(3)*dur; % sustain time
release = times(4)*dur; % release time
slevelstart = .7;
slevelend= .69;
amplitude = 1;

% perform envelope

env = [linspace(0,amplitude, attack), linspace(amplitude, slevelstart, decay),
linspace(slevelstart, slevelend, sustain), linspace(slevelend, 0, release)]; % additional zero
padding

% padding : just in case
dp= length(signal) - length(env);
if dp > 0
 for i = 1:dp
 env = [env 0];
 end
end
envsignal = env.*signal; % make new signal with envelope
signal = envsignal; % set signal to enveloped signal

sound(signal, fs); % play sound

118118118118

CoeficientFinder.m

function [b,a] = CoeficientFinder(n)

close all
%m = [0 0 1 1 0 0 .8 .8 0 0 .7 .7 0 0];
m = [0 0 1 1 0 0 .5 .5 0 0 .3 .3 0 0];

f = [0 .003 .005 .006 .008 .009 .0095 .0105 .011 .019 .020 .022 .023 1.0];
[b,a] = yulewalk(n, f, m);
b;
a;
%[h, w] = freqz(b,a,128);
%plot(f,m,w/pi, abs(h));

% .0055 .01 .021 : 121.2750, 220.5, 463.0500
[h, w] = freqz(b,a);
freqAxis = length((h))
%plot([1:freqAxis]/freqAxis, abs(h)), axis([0,100/freqAxis, 0, 0.8]), hold on;
stem(0.0055, 1, 'g');
stem(0.01, 1, 'g');
stem(0.021, 1, 'g');

BayanSimulator3.m

% function signal = BayanSimulator3(N, burst, fs, tabs, split)
%
% N : initial burst for signal
% burst : iterations of signal
% fs : sampling frequency
% tabs : number of coeficients for filter equation
% split : will only work with input 1
%
% ex. signal = BayanSimulator3(200, 10000, 14000, 32, 1);
%
%
% Ajay Kapur May 15, 2001

function signal = BayanSimulator3(N, burst, fs, tabs, split)

% make random signal -1 ~ 1 with DC Compensation
% ---
x1 = 2*rand(1,N);
x1 = x1 - mean(x1);
burst = burst - length(x1);

119119119119

x = [x1, zeros(1, burst)];

% generate noise and init. delay line
% make sure burst and delay line agree: burst >= delay line
% ---

% Filtering

% .0000025 .000025 .00025 .0055 .01 .021 .415 : 121.2750, 220.5, 463.0500

k = split;
high = 0.0;
for i = 1:k

 m = [0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 .5 .5 0 0 .2+high .2+high 0 0];
 f = [0 .000001 .000002 .000003 .000004 .00001 .00002 .00003 .00004 .0001 .0002 .0003
.0004 .003 .005 .006 .008 .009 .0095 .0105 .011 .019 .020 .022 .023 1.0];

 [b,a] = CoeficientFinder(tabs, m, f);
 if i == 1
 d = length(x)/k;
 d = floor(d);
 temp = x(1:d);
 temp2 = filter(b,a,temp);
 signal(1:d) = temp2;
 else
 c = (i-1)*length(x)/k;
 c = floor(c);
 d = (i)*length(x)/k;
 d = floor(d);
 temp2 = filter(b, a, temp);
 temp2;
 signal(c:d) = temp2;
 end
end

signal = 2*signal/max(signal);

%%%%%%%%ENVELOPE%%%%%%%%%

duration = length(x);
time = [.05 .1 .45 .4];
% Initialize Variables
a = linspace(0, 1, time(1)*duration);
d = linspace(1, 0.7, time(2)*duration);
s = linspace(0.7, 0.69,time(3)*duration);

120120120120

r = linspace(0.69, 0, time(4)*duration);
env = [a d s r];

signal = signal .* env;
close all; % close graphs
sound(signal, fs);
% Play sound and plot
% ---

BayanSimulator.m

% This matlab program simulates the Bayan sound of a Tabla
% In this program, the filter equation changes at every iteration
% from a lower sound to a higher sound!
%
% BayanStringSimulator(burst, iterations, fs)
%
% burst : to intialize delay lines
% iterations : duration of sound file
% fs : sampling frequency
%
% ex. signal = BayanSimulator(250, 10000, 8000)
%
% Ajay Kapur, May 11, 2001

function signal = BayanSimulator(burst, iterations, fs)

N = fs/burst; % Actual delay time
N = floor(N); % round floor down to an integer

duration = (1000*iterations/fs); % duration is length of sample (msec)

% x(n): Create noise (length depends on fs/freqHz) NOT ITERATIONS!!!
x = 2*rand(1, N); % fill x with random numbers
x = x- mean(x); % take away DC, signal now between -1 and 1

% y(n): Create noise (length depends on iterations)
y = [zeros(1, N+1)]; % fill y with 0's from 1 to N+1

% x(n): pad with zeros
if iterations > length(x)
 d = iterations - length(x);
 x = [x zeros(1, d)]; % add zeros after original x
end

121121121121

%%%%%%%%%%%% FILTERING %%%%%%%%%%%%

% initialize variables before Filtering
temp = 0;
signal = 0;
lengthYoffset = length(y)-1;
high = 0.0;
low = 0.0;
mr = 0.0;

for n = 1 : iterations

 % Coeficient finder
 m = [0 0 1+low 1+low 0 0 1+low 1+low 0 0 1+low 1+low 0 0 1 1 0 0 .5+high .5+high 0 0
.2+high .2+high 0 0];
 f = [0 .000001 .000002 .000003 .000004 .00001 .00002 .00003 .00004 .0001 .0002 .0003
.0004 .003 .005 .006 .008 .009+mr .0095+mr .0105+mr .011+mr .019+mr .020+mr .022+mr
.023+mr 1.0];
 [b,a] = CoeficientFinder(5, m, f);
 close all;
 %high = .5 - n*(.5)/iterations; % high frequency amplitude (m) approach 1 (.5+.5) and
.7 (.5+.2)
 %low = n/iterations - .8; % low frequency amplitude (m) approach .2 (1 - .8)
 %mr = .02 - n*(.02)/iterations; % variable to move pole up to a higher area

 if (n == 1) % special case 1 --- if n = 1, dont want to have negative indexing
 y(1) = a(1)*x(n);

 elseif (n == 2) % special case 2 --- if n = 2, dont want to have negative indexing
 y(2) = a(1)*x(n) + a(2)*x(n-1)+b(1)*y(n-1);
 % upate delay lines
 y(n-1) = y(n);
 x(n-1) = x(n);
 elseif (n == 3) % special case 3 --- if n == 3, dont want to have negative indexing
 y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+ b(1)*y(n-1) + b(2)*y(n-2);
 % upate delay lines
 y(n-2) = y(n-1);
 y(n-1) = y(n);
 x(n-2) = x(n-1);
 x(n-1) = x(n);
 elseif (n == 4) % special case 4 --- if n == 4, dont want to have negative indexing
 y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+ b(1)*y(n-1) + b(2)*y(n-
2)+b(3)*y(n-3);
 % upate delay lines
 y(n-3) = y(n-2);
 y(n-2) = y(n-1);
 y(n-1) = y(n);
 x(n-3) = x(n-2);
 x(n-2) = x(n-1);

122122122122

 x(n-1) = x(n);

 elseif (n == 5) % special case 5 --- if n == 5, dont want to have negative indexing
 y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+a(5)*x(n-4)+ b(1)*y(n-1) +
b(2)*y(n-2)+b(3)*y(n-3)+b(4)*y(n-4);
 % upate delay lines
 y(n-4) = y(n-3);
 y(n-3) = y(n-2);
 y(n-2) = y(n-1);
 y(n-1) = y(n);
 x(n-4) = x(n-3);
 x(n-3) = x(n-2);
 x(n-2) = x(n-1);
 x(n-1) = x(n);
 elseif (n == 6) % special case 6 --- if n == 6, dont want to have negative indexing
 y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+a(5)*x(n-4)+a(6)*x(n-5)+
b(1)*y(n-1) + b(2)*y(n-2)+b(3)*y(n-3)+b(4)*y(n-4)+b(5)*y(n-5);
 % upate delay lines
 y(n-5) = y(n-4);
 y(n-4) = y(n-3);
 y(n-3) = y(n-2);
 y(n-2) = y(n-1);
 y(n-1) = y(n);
 x(n-5) = x(n-4);
 x(n-4) = x(n-3);
 x(n-3) = x(n-2);
 x(n-2) = x(n-1);
 x(n-1) = x(n);
 else % everyother case
 y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+a(5)*x(n-4)+a(6)*x(n-5)+
b(1)*y(n-1) + b(2)*y(n-2)+b(3)*y(n-3)+b(4)*y(n-4)+b(5)*y(n-5)+b(6)*y(n-6);
 % upate delay lines
 y(n-6) = y(n-5);
 y(n-5) = y(n-4);
 y(n-4) = y(n-3);
 y(n-3) = y(n-2);
 y(n-2) = y(n-1);
 y(n-1) = y(n);
 x(n-5) = x(n-4);
 x(n-4) = x(n-3);
 x(n-3) = x(n-2);
 x(n-2) = x(n-1);
 x(n-1) = x(n);
 end % end if else
 %accumulate output array;
 signal = [signal y(n)];
 end

%%%%%%%%ENVELOPE%%%%%%%%%

123123123123

% Initialize Variables

duration = length(x);
time = [.05 .1 .45 .4];
% Initialize Variables
a = linspace(0, 1, time(1)*duration);
d = linspace(1, 0.7, time(2)*duration);
s = linspace(0.7, 0.69,time(3)*duration);
r = linspace(0.69, 0, time(4)*duration);
env = [a d s r 0];

signal = signal .* env; % set signal to enveloped signal

sound(signal, fs); % play sound

124124124124

Thesis Concert Program Notes
“Electronic Tabla Project”

Ajay Kapur and Friends

Taplin Auditorium
Princeton University

8:00 pm April 25th, 2002

Participating Composers, Writers, Performers & Computer
Engineers

Philip Blodgett
Richard Bruno

Perry Cook
Philip Davidson

Christoph Geiseler
David Hittson

Peter Lee
Adam Nemett

Jason Park
Tae Hong Park
Audrey Wright

Appendix

E

125125125125

Acknowledgements

Special Thanks to all those who have supported this project. Professor Scott
Burnham who is chair of the Music Department, Chair David Dopkin of the
Computer Science Department, Dean Peter Bugucki of the Engineering School,
President Harold T. Shapiro, President Shirley M. Tilghman, Vice President of
Student Life Janet S. Dickerson, Professor Perry Cook, Georg Essl, Philip
Davidson, my roommates David Hittson & Adam Nemett, and my family.

Composition Technique
In preparation for this concert a unique composition technique was administered.
An artist would come up with a kernel idea for a composition, and would then
lead other participants to produce collective product. The first author listed is the
author of the kernel.

Technical Staff:

James Allington
Kiriko Murakami
Ernesto Rivera
Mary Lee Roberts

Questions/Information:

Ajay Kapur
609-818-0730
akapur@princeton.edu

mailto:akapur@princeton.edu

126126126126

Program Notes
Preparation & Concentration

“Samsara”
This song describes our daily cycle and its correlation to the Buddhist idea of
existing in our physical world – a world of passions, attachments, multiplicities,
and in a certain sense, illusions. One goes through daily routines only to find that
these routines must be repeated, endlessly. In much the same way, Buddhism
teaches that we are caught in Samsara, the endless cycle of birth and rebirth. We
dull and cover this suffering by keeping ourselves busy, by hiding, by becoming
numb. The final bell ring represents the summoning to awake. This song was
written in June of 2001 in the Zookjera house in Hopewell, NJ. The lyrics, written
by Adam Nemett, are included.

Composers Ajay Kapur, Dave Hittson, Peter Lee, Adam Nemett

Performers Dave Hittson (vocals)
 Peter Lee (guitar)
 Tae Hong Park (bass)
 Audrey Wright (flute)
 Ajay Kapur (drum set, Nepalease bells)

“Arthur”
Arthur is a sample from the musical score being composed for the forthcoming
film, Art & The Instrument. Written by Adam Nemett, the film is about an
enigmatic art school janitor (Arthur) who passes away, but leaves behind the
blueprints and electronic instruments for a new system of ritual worship – a
system which uses music as its driving force. This song is an attempt to
intertwine the kernels behind some of Arthur’s rituals, drawing on musical ideas
such as Inspiration, Attack, and Consonance. This song was written in December
of 2001 in the Pennington house. With any luck, Art & The Instrument will be
showing in theaters across the nation in Spring of 2003.

Composers Ajay Kapur & David Hittson

Performers Dave Hittson (vocals, acoustic guitar)
 Philip Blodgett (vocals, bass)
 Jason Park (guitar)
 Ajay Kapur (drum set)

127127127127

“Manoj”
This electrono-mified, tribal groove song is based on the power of escalating
energy flow. Sit back, relax and let a higher state of mind take hold. This song
was written for and dedicated to a good friend experiencing difficult times. It
was written in November of 2000 in the Zookjera house in Hopewell, NJ.

Composers Dave Hittson, Ajay Kapur, Peter Lee

Performers Perry Cook (DGtalFlow)
 Peter Lee (guitar)
 Tae Hong Park (bass)
 David Hittson (guitar)
 Ajay Kapur (drum set)

Manifestation

Introducing the Electronic Tabla (ETabla). The
Electronic Tabla triggers both sound and graphics
simultaneously. It allows for a variety of traditional
tabla strokes and new performance techniques, while
graphic feedback allows for artistic display. Philip
Davidson will be controlling shapes, colors, and
textures of graphics, reacting real-time to changes in
mood, tempo and style of the performed ETabla music.

“Bupali Raag”
We introduce the Electronic Tabla by playing a North Indian classical piece. The
Bupali Raag (based on the major pentatonic scale) will be played over a tin taal
theka (16 beat pattern).

Performers Audrey Wright (bansuri flute)
 Ajay Kapur (ETabla) – World Premiere

“Fire Fly and the Ghost”
This song is based on a meditation practice developed by Abraham Abulafia, a
13th century Jewish mystic. By permutating the letters of the names of God
according to a specific formula of chanted vowels, Abulafia found an effective
and ecstatic method of heightening his meditative concentration. The lyrics of
this song follow Abulafia’s model: each line ends in an extended vowel sound,
moving along the progression, OH—AH—AY—EE—OO. In the next verse, the
pattern begins again at a new starting place, AH—AY—EE—OO—OH, and so
on. This song was written in June of 2001 in the Zookjera house in Hopewell, NJ.

Composers Peter Lee, Dave Hittson, Adam Nemett, Ajay Kapur

Performers David Hittson (vocals)
 Peter Lee (guitar)
 Audrey Wright (flute)
 Ajay Kapur (ETabla)

128128128128

“In and Out with Samba”

This song features Christoph Geiseler on The Groovebox: Roland MC-505. ‘In
and Out with Samba’ is a demonstration of its musical potential, and even more
so, an indication of the limitless plane of the modern musical era. The name of
the piece indicates the fluidity of the music and is emblematic of the versatility of
moving between one genre of music and another. By paying close attention to
the rhythm of the piece, one can perceive the juxtaposition between the
Electronic Tabla and the pre-programmed Groovebox, but simultaneously
understand how the two work together to mesh an electronic element with an
improvisational impulse.

Composers Christoph Geisler & Ajay Kapur

Performers Christoph Geisler (GrooveBox)
 Ajay Kapur (ETabla)

“Dissonance Ritual”
This piece has four movements of electronic dissonance. The first movement
starts out with a call-and-response between the ETabla, DgtlFlow, and
Groovebox. In the second movement, this energy grows into a simple melodic
theme played on guitar and bass. This flows into a third movement marked by
high velocity and interaction. The piece ends on a fourth movement Drum n’
Bass groove.

Composers Ajay Kapur, David Hittson, Christoph Geiseler
 Tae Hong Park, Perry Cook

Performers Perry Cook (DGtlFlow)
 Tae Hong Park (bass)
 David Hittson (guitar)
 Christoph Geisler (GrooveBox)
 Ajay Kapur (ETabla)

“Harmony Ritual”
This piece is a folk-rock piece centered around the resolution of dissonances into
consonances. Both the melodies and harmonic progressions make use of these
resolutions to most strongly convey “consonant sweetness”. This song was
written in July of 2001 in the Zookjera house in Hopewell, NJ, on David’s
Birthday.

Composers Dave Hittson, Richard Bruno, Jason Park

Performers David Hittson (vocals, acoustic guitar)
 Jason Park (guitar)
 Philip Blodgett (bass, vocals)
 Richard Bruno (vocals, acoustic guitars)
 Ajay Kapur (ETabla)

 129129129129

Biographies

Philip Blodgett
Philip A. Blodgett is philosophy major who plays many instruments including drum set,
bass, and guitar. He currently serves as vocalist, instrumentalist, and percussionist for
many musical groups including the Rhythm Method and Lack of Use.

Richard Bruno
Richard Bruno is a psychology major who just finished his thesis on melodic perception.
He has been writing songs and playing in bands since junior high school, and is most
recently a member of The Subcons. Richard also sings with the a cappella group, Shere
Khan and has taken voice lessons here at Princeton.

Perry Cook
Perry R. Cook attended the University of Missouri at Kansas City Conservatory of Music
from 1973 to 1977, studying voice and electronic music. He worked as a sound engineer
and designer from 1976 - 1981. He received the BA in music 1985, and the BS in
Electrical Engineering in 1986 from UMKC. He received a Masters and PhD in Electrical
Engineering from Stanford in 1990. He continued at Stanford as Technical Director of
the Center for Computer Research in Music and Acoustics, until joining the faculty of
Princeton University in 1996, where he is now Associate Professor of Computer Science,
with a joint appointment in Music. He has published nearly 100 technical/music
papers, and presented lectures throughout the world on the acoustics of the voice and
musical instrument simulation, human perception of sound, and interactive devices for
expressive musical performance. Mr. Cook has performed as a vocal soloist and as a
computer musician throughout the world, and has recorded Compact Disks on the
Lyricord Early Music Series Record Label with the vocal group Schola Discantus.

Philip Davidson
Philip Davidson '02 is a senior majoring in computer science with a focus on graphics
and visualization. He has worked with the display wall group, the committee for
abstract events, the Nassau Weekly, and terrace club. He is presently interested in
human interfaces for electroaudiovisual installation and performance, research into non-
photorealistic rendering methods, and finding a job. He would like to thank Lansing
NY, NYC, Jersey City NJ, Washington DC, and especially Duluth MN for their fine
populace.

 130130130130

Christoph Geiseler
Christoph Geiseler is a sophomore in the politics department. He has played classical
and jazz guitar for 7 years, played in a high-school jam-band, and now DJ-ing is his
current fascination. In this concert, Christoph plays the Roland’s MC-505 (drum-
machine/synthesizer/sequencer/mixer/sampler) which can speak the musical
language in thousands of different dialects, keys, tempos, and grooves. Can you
imagine speaking Chinese with an Italian rhythm or Swahili with a French moue? The
groovebox literally does the same thing with all forms of music by regulating pitch,
tempo, dynamics, and, most importantly, melody, to create extremely adaptable and
modifiable musical sequences. Christoph hopes this experience we share together in the
Electronic Tabla Project will redefine or even spark a general interest and love for music
in all its various forms and functions.

David Hittson
David is a music major with experience on the bass, guitar, piano, violin and voice. His
musical life began at age two and he hopes it will continue far into the future. He would
like to thank his parents, teachers and the music department. Also, he would like to
congratulate Ajay on his impressive thesis accomplishment, and in general.

Ajay Kapur
Ajay is a computer science major who has taken 12 courses in the Music Department. He
developed the Electronic Tabla as his senior thesis under the mentorship of Professor
Perry Cook, and team effort of Georg Essl and Philip Davidson. Ajay has played drum
set for 12 years, and has recently started playing other world percussion instruments
such as djembe, tabla, and dolak. He has played in several bands since he was in high
school, the most significant one to him being Zookjera, in which he was able to find
himself as a musician. Ajay would like to thank his music teahers John Arucci, John
Mastriani, Tony Branker, Bob Nolte, Rakesh Kumar Parihast, and Professor Perry Cook.
Ajay plans to study Indian Classical music in India next year while continuing to create
new instruments for musical expression.

Peter Lee
Classically trained, Peter started lessons on the piano at age 4, moving to the violin at
age 8. At age 13, he heard his first Jimi Hendrix album and was hooked. He bought an
electric guitar, started a band, and has been playing ever since. He would like to thank
his teachers Stephen Wolosonovich, Michael Rosenbloom, and Bruce Arnold.

Adam Nemett
Adam is a religion major involved with the creative writing department. He is Co-
Editor-in-Chief of the Nassau Weekly and co-founder of the student organization,
Modern Improvisational Music Appreciation (MIMA). He served as lyricist and spoken-
word vocalist for Zookjera. Currently, Adam is writing and directing a feature-length
film, featuring music composed by Ajay and Dave and centered around Ajay’s digital
musical instruments.

 131131131131

Jason Park
Jason Park is a philosophy major who has played guitar for 8 years. He currently plays
in the Rhythm Method with Phil Blodgett.

Tae Hong Park
Tae Hong Park received his B.E degree in Electronics at Korea University in 1994 and
has worked in the area of digital communication systems and digital musical keyboards
at the GoldStar Central Research Laboratory in Seoul, Korea from 1994 to 1998. He
received his M.A. from Dartmouth’s Electroacoustic Music Program in June 2000 and is
currently a Ph.D. student at Princeton’s Composition program. His current interests are
primarily in musical and technical issues in computer and electroacoustic music, which
include composition and research in multi-dimensional aspects of timbre.

Audrey Wright
Audrey can often be found playing with some musical group or other--be it the
Princeton University Jazz Ensemble, the Klez Dispensers, the Emergency Funk Squad, or
the Ellipsis Jazz Project... She was recently introduced to indian classical music, and
loved it so much that she decided to try playing the bansuri flute!

 132132132132

Lyrics – By Adam Nemett

Samsara

Wake.
Darkness melting sun rays give way to day
Top-sheet tied and bleary eyed, can’t be late.
Gotta make it there by eight
Water wash away the mind
The wrinkled lines and slumber signs.

 Time it unwinds, my slowing,
 Why is it always so hard to get going?

Fiend.
Peeling out to fill up my gasoline
and shoot the bull and pump me full of caffeine
but a break is seldom seen
Daddy’s watching me behave
The norm has formed me to a slave.

 We thrive on prizes
 Can this be what being alive is?

Wake,
Fiend of Day,
Escape
Then we fly away.

Hide.
Fighting too much, sliding into the night.
The quiet sparks remind the dark of its light,
But the world has tied me tight
Might need some numbing
to call the King and let me sing.

 Blankets thrown over sorrow
 But will it still be there tomorrow?

Curse.
Gently trapped inside the endless curl
And let unfurl the sorry Samsara world.
So we dance the daily twirl,
Means lead to ends
Or does it just begin again?

 133133133133

 Firefly and Abulafia’s Ghost

Catch a single firefly in a field and the buzz
is slow and lonely compared to the full feel
of the congregated party,
lit like lights winking on liquid.

Blur the aimed gaze
and let eyes out to play with the periphery
like two kids taking in
the carnival of a thousand syncopating winks.
When playing hide n’ seek in waving wheat,
it’s easy to lose and find focus.

Go,
Find me a fall
Spring from the day, when you can’t see
You see what’s true.
You know the way,
I’ll try and meet you.

Dark,
I like it that way,
Stray from the city to the woods
The green lights glow.
Lone but complete,
Make sure you go.

Chorus
Ghost roll
Disarray
Look up
All be laughing in the passion
Play fair
Head games
Intertwine
His names

Stay,
lay close to me
even the moon looks like it knows
just where we are.
‘Cross the cartoon
of lightning bug stars.

See,
Open the book
Watch it unfold until lights fall
And dim away.
Call from the Ghost,
Back to the day.

 134134134134

Under the muffle of midnight
those whispered secrets somehow
seep between cracks
of seamless trees,
stumbling and falling
like weary travelers
coming upon the cottage
of Another’s open ear.

 135135135135

REFERENCES

1 Courtney, David R. Fundamentals of Tabla: Complete Reference for Tabla, vol. 1, pp. 1-36 (Sur Sangeet
Services, 1995).

2 Rossing, Thomas D. The Science of Sound, pp. 373-374 (Addison-Wesley Publishing Company, 1999).

3 See http://www.Tabla.com/articles/part1a.html

4 Courtney, David R. “Repair and Maintenance of Tabla”, Percussive Notes, vol. 31, no. 7, pp 29-36,
(October 1993).

5 Kippen, James. “Tabla Drumming and the Human-Computer Interaction”, The World of Music, vol. 34,
no. 3, pp 72-98, (1992).

6 Wright, Mattew & David Wessel, “An Improvisation Environment for Generating Rhythmic Structures
Based on North Indian ‘Tal’ Patterns”. Available at: http://cnmat.cnmat.berkeley.edu/ICMC98/papers-
html/wright-wessel-tal-demo.html

7 Kaul, Vatsala. “Talvin Singh”, Available at: http://www.india-today.com/ttoday/121998/boom.html

8 Tsering, Lisa. “Talvin Singh Has Seen the 21st Century, and It’s “ O.K.”, Available at:
http://members.tripod.com/~LisaTsering/talvin.html

9 Parihast, Rakesh Kumar. Ustad Alla Rakha Institute of Music. Bombay, India. Private Tabla Lesson
(August 2002).

10 Available at: http://chandrakantha.com/articles/indian_music/folk_music.html

11 Courtney, David R. “Mridangam and Tabla: a Contrast”, PERCUSSIONS: Cahier Bimensiel d’Etudes et
d’Informations sur les Arts de la Percussion. (March/April 1993).

12 Courtney, David R. “Basic Overview of the Tabla”, Modern Drummer, vol. 17, no. 10, (October 1993).

13 Vir, Ram Avtar. Learn to play on Tabla, pg. 35, (Punjab Publications, 1982)

14 Available at: http://www.howstuffworks.com/mouse2.htm

15 Available at: www.interlinkelec.com

16 Available at: http://www-
ccrma.stanford.edu/CCRMA/Courses/252/sensors/node8.html#SECTION00032000000000000000

17 “BASIC Stamp Programming Manual,” version 2.0, Parallax Inc., Available at www.parallaxinc.com

18 Available at: www.midi.com

19 Cook, Perry R., “Serial Communications Example”, Available at:
http://www.cs.princeton.edu/courses/archive/fall01/cs436/InputMIDI/midisoft.html

 136136136136

20 “AppKit: Using the LTC1298 12-bit Analog-to-Digital Converter”, Parallax Inc.

21 Raman, C.V., KT., F.R.S., N.L., "The Indian Musical Drums." Proceedings of the Indian Academy of
Science, A. Vol 1. 1934.

22 Steiglitz, Ken. A Digital Signal Processing Primer with Applications to Digital Audio and Computer Music. pg. 1-6
and 125-128, Addison-Wesley Publishing Company, Menlo Park, CA, 1996.

23 Cook, Perry R. Music, Cognition and Computerized Sound: An Introduction to Psychoacoustics. The
MIT Press, pg. 1-10, Cambridge, MA: 1999.

24 Rossing, Thomas D. The science of sound. pg. 127. Addison-Wesley Publishing Company, Reading,
Mass, 2nd edition, 1999.

25 Hussain’s, Zakir, Remember Shakti, CD 2, Track 1.

26 Essl, Georg & Perry R. Cook, "Banded Waveguides: Towards Physical Modeling of Bar Percussion
Instruments," In Proc. Int. Computer Music Conf. (ICMC), Beijing, 22-28 October, pp 321-324, (1999).

27 Essl, Georg & Perry R. Cook, "Sound Propagation Modeling in Solid Objects," submitted to IEEE
Computer Graphics and Applications.

28 Keller, J. B. & S. I. Rubinow, “Asymptotic Solution of Eigenvalue Problems," Annals of Physics 9, pp
24-75, (1960).

29 Stam, J., and Fiume, E., “Turbulent Wind Fields for Gaseous Phenomena”, SIGGRAPH ’93, 369-376,
(1993).

30 Cook, Perry R. “Principals for Designing Computer Music Controllers”, ACM CHI Workshop on New
Interfaces for Musical Expression, Seattle, (April 2000).

	THE ELECTRONIC
	TABLA
	Ajay Kapur

	Evolution of the Tabla with Technology
	Traditional Tabla Strokes
	Bayan Strokes
	Dahina Strokes
	Combination Strokes

	Specific names are given to strokes that are produced by both hands simultaneously on the Dahina and Bayan. Dha refers to a Ga stroke combined with a Na stroke. Dhin refers to a Ga stroke combined with a resonating Ta stroke.1 Tin refers to a Ka stroke c
	Traditional use of the Tabla in Indian Music
	Music Controller
	Force Sensing Resistors
	Basic Stamp
	MIDI
	his chapter describes a detailed design schematic for the ETabla. The chapter is organized by time, showing progress at key milestones of accomplishment. Thus, it outlines the process of creating the MIDI Tabla controller. There are two controllers which
	November 29th, 2001
	December 15th, 2001
	January 15th, 2002
	March 7th, 2002
	March 23rd, 2002
	April 3rd, 2002
	April 6th, 2002
	April 23rd, 2002
	What is Modal Analysis?
	C.V. Raman’s Tabla Sound Analysis
	Modal Analysis using MATLAB
	
	
	
	
	Ga

	PEAK FINDING TRIAL 3:

	Sound Analysis Conclusion
	MATLAB Simulated Sound
	Physical Model using STK Toolkit
	The Visual System
	The Controls
	New Instrument Design Schematics
	Experiments on Measuring Position Using an FSR
	
	
	Materials
	Procedure
	Connect the four-pin connector of the long FSR to the circuit making sure to match the black dots.
	Connect the output wires of the circuit to the National Instruments input block by connecting the black wire (ground) to pin 67 and the red wire (signal) to pin 68
	Connect the two 9-volt batteries to bias the circuit.
	Load the program called scope.prj in LabWindows CVI and run it.
	Materials
	Procedure
	Remove the long FSR and connect the four-pin connector of the square FSR to the circuit making sure to match the black dots. Answer questions 1 through 4 below.
	Stop running scope.prj.
	Launch MATLAB.
	Load the program called daqstart.prj in LabWindows CVI and run it.
	Set the number of samples to 1000.
	Set the sampling rate to 500.
	While slowly increasing the pressure on the sensor, start the data collection. Try to linearly increase pressure across the data collection window, but DO NOT look at the trace while doing it! Have one lab partner say "go" while another pushes the FSR.
	Click on the Matlab button. This sends the acquired samples to MATLAB. In Matlab, execute the plot(cvi_data) command to see the acquired data. Answer Questions 5 and 6 below.
	Go back to CVI and acquire 1000 more samples with the sensor at rest on the table.
	As before, plot the result in MATLAB.
	Repeat steps 11 and 12 while simply holding the sensor in your hand, but applying no pressure.
	Remove all of the batteries from the signal conditioning circuit.
	Disconnect the FSR circuit.

	Bayan2HS.bs2
	myFFT.m
	BayanSimulator2.m
	CoeficientFinder.m
	BayanSimulator3.m
	BayanSimulator.m
	
	
	
	
	“Electronic Tabla Project”

	P

	Program Notes
	
	
	
	
	Preparation & Concentration
	“Samsara”
	“Arthur”
	“Manoj”
	“Bupali Raag”
	“Fire Fly and the Ghost”
	“In and Out with Samba”
	“Dissonance Ritual”
	“Harmony Ritual”

	B
	Biographies

	Samsara

	Firefly and Abulafia’s Ghost
	
	
	Blur the aimed gaze
	
	
	Chorus

