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THE ELECTRONIC TABLA 
 

Abstract 
 
 

This paper describes the design of an Electronic Tabla controller. The 
Electronic Tabla (ETabla) triggers both sound and graphics simultaneously. It 
allows for a variety of traditional Tabla strokes and new performance techniques. 
Graphical feedback allows for artistical display and pedagogical feedback. This 
paper will describe the background of the Tabla, explain key concepts of digital 
signal processing and electronic music, and outline in detail the process of 
creating the Electronic Tabla.  
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Introduction 
Overview of the Electronic Tabla Project 

 

ablas are a pair of hand drums traditionally used to accompany 
North Indian vocal and instrumental music. The silver, larger 
drum (shown in Figure 1.1) is known as the Bayan. The smaller 

wooden drum is known as the Dahina.1 The pitch can be tuned by 
manipulating the tension on the pudi (drumhead). The Bayan is tuned by 
adjusting the tightness of the top rim. The Dahina can be tuned similarly, 
as well as by adjusting the position of the cylindrical wooden pieces on 
the body of the drum. Tabla is unique because the drumheads have 
weights at the center made of a paste of iron oxide, charcoal, starch, and 
gum (round, black spots shown in the Figure 1.1).2 Also, the Tabla makes 
a myriad of different sounds by the many different ways it is stroked. 
These strokes follow a 
tradition which has been 
passed on from generation to 
generation, from guru 
(teacher, master) to shikshak 
(student) in the country of 
India. The combination of the 
“weighting” of the drum-
head, and the variety of 
strokes by which the Tabla 
can be played, gives the 
drum a complexity that 
makes it a challenging 
controller to create, as well as 
a challenging sound to 
simulate.  

Chapter 

1 

T 

Figure 1.1 Picture showing North Indian Tabla. The 
Bayan is the silver drum on the left. The Dahina is 

the wooden drum on the right. 
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Project Description 
 

The purpose of this project is to use technology to create a real-time 
instrument that models the Tabla. This Electronic Tabla (known as the 
ETabla) has digitizing sensors, custom positioned to traditional Tabla 
technique, which converts finger strikes and hand slaps to binary code 
which computers can understand. These signals are then used to trigger 
real-time sound and graphics.  

 

 

Project Goals      

 

The motivations and goals for creating the Electronic Tabla are to: 

 

1. Develop a controller which can simulate traditional North 
Indian Tabla strokes 

2. Facilitate the fusion between North Indian Classical Music 
and modern electronic music 

3. Expedite the learning process for beginner Tabla players by 
easing the execution of basic Tabla sounds and rhythms 

4. Widen the number of sounds available within the repertoire 
of expert Tabla players 

5. Make it easier to tune the Tabla to the desired pitch 
6. Create audio and visual experiences that express the feelings 

of the performer and enamors the audience 
7. Increase the popularity of the North Indian Drum 
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Project Overview 
In this report, I will present: 

• An overview of the Tabla, including its evolution with 
technology, and how it is traditionally played. 

• An overview of the technology used to create the 
Electronic Tabla controller 

• The creation process and details of the MIDI Tabla 
Controller 

• The sound analysis of the traditional Tabla 

• The various models used to simulate the sound of the 
Tabla 

• The creation and explanation of the graphic feedback 
system 

• The concert which introduces the Electronic Tabla to 
the campus 

• Other applications of the technology used to produce 
the Electronic Tabla   

 

 

The ETabla Team      

 

The Electronic Tabla team consists of five key players who 
have helped make the instrument a success. Professor Perry Cook of 
the Computer Science and Music department has brought his past 
experience of making electronic instruments. Philip Davidson, who 
is an undergraduate student in the Computer Science program, has 
brought his expertise in creating real-time graphic feedback. Georg 
Essl, a PhD Computer Science student has brought his knowledge in 
physically modeling different sounds. Brad Alexander is a millwork 
foreman at County Cabinet Shop, Inc., and helped design custom 
wood pieces for our project. I, Ajay Kapur, am a musician getting a 
degree in Computer Science, who has led and coordinated all these 
talents together to create the Electronic Tabla as my senior thesis 
project.          
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The Tabla 
Origin, Evolution, & Tradition 

 

Evolution of the Tabla with Technology  
 

There are a few accounts for the origin of the Tabla. A mythological 
account reads:   

 
“Once, a long time ago, during the transitional period between two Ages… people took to 
uncivilized ways … ruled by lust and greed [as they] behaved in angry and jealous ways, 
[while] demons, [and] evil spirits… swarmed the earth. Seeing this plight, Indra (The 
Hindu God of thunder and storms) and other Gods approached God Brahma (God of 
creation) and requested him to give the people a Krindaniyaka (toy) … which could not 
only be seen, but heard, … [to create] a diversion, so that people would give up their bad 
ways.”1 

 
One of the Krindaniyakas, which Brahma gave to humans was the Tabla. 
Other legends state that the Tabla was created in the 18th Century by 

Sidhar Khan Dhari, a 
famous Pakhawaj player. 
Pakhawaj is a genre of 
Indian drum defined by a 
barrel with drumheads on 
either side. The Mrindangam, 
shown in Figure 2.1, is one 
drum in this family of 
drums. It was said that 
Sidhar Khan provoked an 
angry dispute after losing a 
music contest and his 

Chapter 

2 

Figure 2.1 Picture showing a Mridangam, a drum of the 
Pakhawaj family. 
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Pakhawaj was chopped in half by a sword. Thus, the first Tabla was 
created accidentally.3  
 

Some Tablas were created out of clay, others out of wood. As 
technology for producing metal alloys evolved, the Bayan started to be 
molded out of brass and steel.4  
 

As the popularity of the Tabla spread to the western hemisphere, 
nearly coincident with emergence of the personal computer, scientists 
began to combine the Tabla with computers. In 1992, James Kippen 
created software which allowed a user to input a traditional Tabla 
rhythmic pattern, which the computer would then use to synthesize an 
improvised pattern that followed traditional rules for variation.5 In 1998, 
Mathew Wright and David Wessel of University of California Berkeley, 
aimed to achieve a similar goal, with a real time interface and unique data 
structure. They successfully created software that generated “free and 
unconstrained” music material, which could fit into a given traditional 
rhythmic structure.6 Meanwhile, Talvin Singh created a direct input from 
his Tabla to computer effects, achieving sound manipulations in an 
invention he calls “Tablatronics”. 7 8 
 

Now, our team has created a Tabla controller that is modeled to the 
playing style of North Indian classical traditions, and which outputs 
computer-generated sound and graphics.    
  
 

Traditional Tabla Strokes 
 

It is important to understand the traditional playing style of the 
Tabla to see how our controller models its hand movement. Below, in 
Figure 2.2, is a picture explaining the names of the different parts of the 
Tabla pudi (drum head). 

 
 
 

 
 

Figure 2.2 Picture showing parts of the Tabla pudi. 
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Bayan Strokes 
 

There are two basic strokes played on the Bayan. The Ka stroke is 
executed by slapping the flat left hand down on the Bayan as shown in 
Figure 2.3 (a). Notice the tips of the fingers extend from the maidan 
through to the chat and over the edge of the drum. The slapping hand 
remains on the drum after it is struck to kill all resonance, before it is 
released away. The Ga stroke, shown in Figure 2.3 (b), is executed by 
striking the maidan directly above the syahi with the middle and index 
fingers of the left hand. When the fingers strike, they immediately release 
away from the drum, to let the Bayan resonate with sound. The heel of the 
left hand controls the pitch of the Ga stroke, as shown in Figure 2.3 (c). It 
controls the pitch at the attack of the stroke, and can also bend the pitch 
while the drum is resonating. Pitch is controlled by two variables of the 
heel of the hand: force on to the pudi, and the position on the pudi from the 
edge of the maidan and syahi to the center of the syahi. The greater the force 
on the pudi, the higher the pitch. The closer to the center of the syahi, the 
higher the pitch. 1 

 
 

Dahina Strokes 
 
There are six basic strokes played on the Dahina. The Na stroke, 

shown in Figure 2.4 (a), is executed by lightly pressing down the pinky 
finger of the right hand between the chat and the maidan, and lightly 
pressing the ring finger down between the syahi and the maidan, in order to 
mute the sound of the drum. Then one strikes the chat with the index finger 
and quickly releases it so the sound of the drum resonates. The Ta stroke is 
executed by striking the index finger of the right hand at the center of the 

(a)   (b)   (c) 
Figure 2.3 Pictures showing traditional strokes played on Bayan 
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syahi, as shown in Figure 2.4 (b). The finger is held there before release so 
there is no resonance, creating a damped sound. The Ti stroke, shown in 
Figure 2.4 (c), is similar to Ta except the middle and ring finger of the right 
hand strike the center of the syahi. This stroke does not resonate and creates 
a damped sound.  

 
The Tu stroke is executed by striking the maidan with the index 

finger of the right hand and quickly releasing, as shown in Figure 2.5 (a). 
This stroke resonates the most because the pinky and ring fingers are not 
muting the pudi.1 The Tit stroke, shown in Figure 2.5 (b), is executed similar 
to Na, by lightly pressing the pinky finger of the right hand down between 
the chat and the maidan, and lightly pressing the ring finger down between 
the syahi and the maidan. The index finger now strikes the chat, quickly 
releasing to let it resonate. The index finger strike on the chat is further 
away from the pinky and ring finger than it is on the Na stroke. Tira is a 
combination of two strokes on the Dahina, which explains the two syllables 
of the stroke. This stroke is shown in Figure 2.5 (c) and Figure 2.5 (d). It is 
executed by shifting the entire right hand from one side of the drum to the 
other. It creates a damped sound at each strike.9 
 
 
 

  

Figure 2.4 Picture showing Na, Ta, & Ti strokes played on the Dahina. 

(a)   (b)   (c) 

(a)  (b)  (c)  (d) 

Figure 2.5 Picture showing Tu, Tit, & Tira strokes played on 
the Dahina. 
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Combination Strokes 
 

 Specific names are given to strokes that are produced by both 
hands simultaneously on the Dahina and Bayan. Dha refers to a Ga stroke 
combined with a Na stroke. Dhin refers to a Ga stroke combined with a 
resonating Ta stroke.1 Tin refers to a Ka stroke combined with a Na stroke.9 
  
 
Traditional use of the Tabla in Indian Music  
 

Music is a central component of many functions throughout India, 
such as birth, engagements, weddings, and funerals. Indian Music consists 
of four main styles: folk, tribal, pop, and classical. The Tabla is used in all 
of these forms of music. Indian folk and tribal music are both played in 
villages all around India. Cheaper versions of Tablas are created out of 
commonly available materials.10 Music created for films is the most 
popular in India, similar to music in America which is broadcasted on the 
“top 40” and “MTV”. The Tabla is used in a myriad of songs for these 
three-hour films which are similar to American musicals. There are two 
systems of Indian classical music: Hindusthani music from the North, and 
Carnatic music for the south. The Tabla outlines the rhythmic structure in 
Hindusthani music, while the mridangam, shown in Figure 2.1, outlines 
the rhythmic structure of Carnatic music.11 12  

 

Hindustani Tabla Theory 
 

 Musical enhancement is the major role of the Tabla in North Indian 
classical music. Theka, which literally means “support”, is the Indian word 
for simple accompaniment performed by a Tabla player. The importance 
of the theka underscores the role of the Tabla player as timekeeper. An 
even more specific definition of theka is the conventionally accepted 
pattern of bols which define a tal. The word tal literally means clap, for the 
clapping of hands is one of the oldest forms of rhythmic accompaniment.1 

 

The most fundamental unit of this rhythmic system is the matra, 
which translates to “beat”. In many cases the matra is just a single stroke. 
Just as sixteenth, or eighth notes maybe strung together to make a single 
beat, so too may several strokes of Tabla be strung together to have the 
value of one matra. The next higher level of structure is vibhag, which 
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translates to “measure” or “bar”. These measures may be as short as one 
beat or longer than five. Usually, however, there are two, three, or four 
matras in length. These vibhags are described in waves or claps. A vibhag 
which is signified by a clap of the hands is said to be bhari or tali. 
Conversely, a vibhag which is signified by a wave of the hand is said to be 
khali.1 

 

In the common tal known as Tin Taal (which translates to “three 
claps”), there are 16 matras, divided into four vibhags. Its clapping 
arrangement is arranged: 

Clap, 2, 3, 4, 

Clap, 2, 3, 4, 

Wave, 2, 3, 4, 

Clap, 2, 3, 4, 

    The third line is a khali vibhag, where as the other three lines are bhari 
vibhags. 

 

 In performance, the cycle of sixteen beats is repeated over and over 
again. This cycle, known as avartan, refers to the highest level of 
conceptual rhythmic structure. The repetition of the cycle gives special 
significance to the first beat. This beat, known as sam, is a point of 
convergence between the Tabla player and the other musicians. Whenever 
a cadence is indicated it will usually end on the sam. This means that the 
sam may be thought of as both the beginning of some structures as well as 
the ending of others.1  

 

 The mnemonic syllables, known as bol, represent the various 
strokes of the Tabla, which are described earlier in this chapter. The cycle 
of 16 bols that create Tin Taal is written below: 

Dha, Dhin, Dhin, Dha 

Dha, Dhin, Dhin, Dha 

Dha, Tin, Tin, Ta  

Ta, Dhin, Dhin, Dha 13  
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Bols are useful for two reasons; First, the bol allows the musician to 
remember complicated fixed compositions. Second, the musician uses the 
bol to create the mental permutations of a theka into an improvised 
passage.  

 

 If a musician were to play a basic unadorned theka, it would be 
excruciatingly dull. Advanced Tabla players improvise with dynamics, 
modulation, and ornamentation to add beauty and life to the theka. 
Adding different embellishments and variations to the music is a concept 
defined as prakar.1   

 

 These concepts and techniques of traditional Hindustani music are 
considered in some compositions using the ETabla discussed in Chapter 8, 
as well as the design of the ETabla discussed in Chapter 4. 
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The Technology 
Force Sensing Resistors, Basic Stamp, & MIDI 

 

Music Controller  
  

This chapter describes the technology used to create a musical 
controller. A controller is a device made of different sensors which 
measure human interaction and convert instances into the digital realm. A 
mouse is a controller which uses an infrared LED and sensor to convert 
hand movement into x and y coordinates on a computer screen.14 A 
musical controller takes input from a musician, such as rhythm and pitch, 
to trigger recorded or physically modeled sound using a computer. This 
process is displayed in Figure 3.1. The ETabla is primarily concerned with 
capturing rhythmic impulse from the performers finger taps, as well as 
pitch and type of stroke. 

 
 

Chapter 

3 

Figure 3.1 Picture showing process of Musical Controller 
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Force Sensing Resistors  
  

Force sensing resistors (FSRs) are used to digitize the taps of the 
performer. FSRs are manufactured by Interlink Electronics and can be 
purchased at their online store.15 These sensors use the electrical property 
of resistance to measure the force (or pressure) exerted by a user. They 
essentially are force to resistance transducers. The more pressure exerted, 
the lower the resistance drops. FSRs are made of two main parts: a 
resistive material applied to a piece of film, and a set of digitizing contacts 
applied to another film. This configuration is shown in Figure 3.2. The 
resistive material creates an electrical path between a set of two 
conductors. When force is applied, conductivity increases as the 
connection between the conductors is improved.16 Experiments with FSRs, 
explained in detail in Appendix A, show that conductivity is a linear 
function of force. 

 

 

 

 

 

 

 

 

 

 

The ETabla uses three types of 
FSRs. Square FSRs, shown in Figure 3.3 
(a), and small FSRs, shown in Figure 3.3 
(b), measure only force. Long FSRs, 
shown in Figure 3.3 (c), measure force as 
well as position on the vertical axis. Force 
measurements will be used to control 
velocity (volume). Position measurements 
will be used to control pitch and 
resonance of different finger strikes. Look 
at Appendix A for more details on FSRs. 

Figure 3.2 Diagram showing configuration of Force 
Sensing Resistors16 

  (a)            (b)        (c) 
Figure 3.3 Pictures of the three types 

of FSRs used to create ETabla 
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Basic Stamp  
  

The Basic Stamp is a programmable micro controller, developed by 
Parallax, Inc. There are currently five types of BASIC Stamps: BASIC 
Stamp I, BASIC Stamp II, BASIC Stamp IIe, BASIC Stamp IIsx, and BASIC 
Stamp IIp. The ETabla was first developed using the BASIC Stamp II 
(Shown in Figure 3.4 (a)), and then upgraded to the BASIC Stamp IIsx 
(Shown in Figure 3.4(b)), which has a faster processing speed.  

 

 

 

 

 

 

 

 The ETabla uses the BASIC Stamp II Carrier Board, which can 
accommodate the BASIC Stamp II, and the BASIC Stamp IIsx. FSRs, LEDs, 
resistors, capacitors, and other gizmos are wired together onto this carrier 
board. Detailed design schematics and circuitry of the ETabla will be 
discussed in Chapter 4. 

 

 The BASIC Stamp is programmed by software provided by 
Parallax, for Windows. The programming language is PBASIC (Parallax 
BASIC) which is based off the BASIC programming language. There are 
several versions of PBASIC. The ETabla used versions PBASIC2 and 
PBASIC2sx for programming the BASIC Stamp II and BASIC Stamp IIsx 
respectively.  

 

Code is transferred from the computer to the powered BASIC 
Stamp via a serial port on the carrier board. The code is stored in the 
EEPROM memory after being tokenized. Programming elements, such as 
constants, comments, and variable names, are not stored in the BASIC 
Stamp, so descriptive names and comments are included in PBASIC code 
for the ETabla.         

 

(a)   (b) 
Figure 3.4 Pictures showing BASIC Stamp II and BASIC Stamp 

IIsx 17 
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The BASIC Stamp II only has room for about 500 lines of code, 
executed at 4000 instructions per second, whereas the BASIC Stamp IIsx 
has room for 4000 lines of code, executed at 10,000 instructions per second. 
Thus the BASIC Stamp IIsx executes 2.5 times as fast to time sensitive 
commands. This is why an upgrade was made.17    

 
Pin Descriptions: 

 
PIN  NAME DESCRIPTION 

1 SOUT Serial Output 

2 SIN Serial Input 

3 ATN Attention 

4 VSS System Ground 

5-20 P0-P15 General Purpose I/O 

21 VDD 5 volt Input/Output 

22 RES Reset  

23 VSS System Ground 

24 VIN Unregulated Power 

 

 

Both the BASIC Stamp II and the BASIC Stamp IIsx have 16 I/O 
pins, and two dedicated serial port pins. The serial input is the SIN pin 
and the serial output is the SOUT pin. (Shown in Table 3.1) 

 

The BASIC Stamp runs on 5 to 15 volts DC. It has a feature of a 5-
volt regulator, which converts input from 6 to 15 volts (at the VIN pin) 
down to 5 volts to run the components. +5 volts are available to use on the 
VDD pin. The VSS pin is the ground pin. The ETabla uses a 9-volt battery 
for power which is directly connected to the VIN and VSS pins.  

 

The RES pin is the internal reset pin, which is normally high (+5 
volts) when BASIC Stamp is running its program. It turns low, when 
power supply drops below 4 volts, to sleep the BASIC Stamp safely. When 
re-powered, the BASIC Stamp starts at the first of its stored program. The 
ATN pin has an inverse relationship with the RES pin. It normally is low 

Table 3.1 Table describing pins of the BASIC Stamp II and BASIC Stamp IIsx 17 
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when the RES pin is high, and the BASIC Stamp is running properly. 
When the ATN pin is driven high, it forces the RES low, putting the 
BASIC Stamp to sleep safely.17    

 
Memory:  

 

 The BASIC Stamp II has 2048 bytes of program storage, while the 
BASIC Stamp IIsx, have 16,384 bytes, separated into 8 pages of 2048 bytes. 
Each command written in PBASIC takes a variable amount of space. Most 
commands take 2 to 4 bytes of memory space. Tens of bytes or more are 
taken up by commands such as SERIN, SEROUT, LOOKUP and 
LOOKDOWN, which have many arguments. While editing code on a 
Windows machine, CTRL-M shows a memory map of how space in the 
EEPROM is used.17 

 

 

MIDI  
  

MIDI is short for Musical Instrument Digital Interface. It is a 
communication protocol, which allows electronic instruments (such as 
keyboards, synthesizers, and the ETabla) to connect and interact with each 
other. Thus taps on the ETabla controller can trigger sounds on a 
keyboard remotely. In this case, the ETabla would take information about 
a musical note, such as pitch, volume, start time, stop time, and convert it 
to MIDI. The protocol would then be sent out to a keyboard which has a 
changeable bank of sounds, and the MIDI information is opened to create 
a noise in real-time. This allows one controller to generate the sounds of 
hundreds of instruments! 18  

 

Starting in 1983, MIDI was developed in cooperation with the 
major electronic instrument companies such as Roland, Yamaha, and 
Korg. The companies created a standard interface, to try to generate more 
sales. Since than, the protocol has evolved to fit the needs of professional 
musicians, as larger amounts of controllers and sounds were created.      
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MIDI is transmitted at 31,250 bits per second. Each message has one 
start bit, eight data bits, and one end bit, which means the maximum 
transmission rate would be 3215 bytes per second.  When the first bit is set 
to 1, the byte is a status byte. Status byte denotes MIDI commands such as 
NOTE ON, NOTE OFF, and CONTROL CHANGE, and communicates 
which channel (0-15) to send information. The status byte also determines 
the length of the message, which are generally one, two, or three bytes in 
length.  An example of a common message is illustrated below: 

 

10010000 00111100 01000000 

Note On / Channel 0 Note #60 Velocity = 64 

 

The NOTE ON command will trigger a MIDI device to turn on a sound. 
The pitch byte will tell the device to play Note 60, which is middle C on a 
piano sound bank. The velocity byte will tell the device how loud to play 
the note.19  

 

On a standard MIDI device there are three five-pin ports (IN, OUT, 
THRU) that transmit and receive MIDI information. The IN port receives 
and processes MIDI commands, while the OUT transmits it. The THRU 
port, receives and processes MIDI information and transmits the same 
message through the OUT port.18 The ETabla’s BASIC Stamp converts 
taps on the force sensing resistors to MIDI protocol which is sent through 
a MIDI OUT port. Specific MIDI messages that are triggered will be 
discussed in the detailed design schematic in Chapter 4.  
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The MIDI Tabla Controller 
Chronological Design Schematics 

 

his chapter describes a detailed design schematic for the ETabla. 
The chapter is organized by time, showing progress at key 
milestones of accomplishment. Thus, it outlines the process of 

creating the MIDI Tabla controller. There are two controllers which make 
up the ETabla: EDahina and EBayan. Each section will describe the 
progress for both of these controllers.  
 
November 29th, 2001 
   
EBayan 1.0:  

  
The EBayan was born on a piece of wood. Chapter 2 explained how 

the Bayan has two main strokes: Ga and Ka. The left hand’s middle and 
index finger tap out Ga strokes, while the heel of the hand changes the 
pitch by force and position. Chapter 3 explained how square FSRs 
measure force, and how long FSRs measure force and position. Thus, we 
used one square FSR and one 
long FSR to try and simulate 
the Ga stroke, as shown in 
Figure 4.1 (a). Figure 4.1 (b) 
shows how these FSRs were 
positioned on a slab of wood, 
as the beginning of the 
EBayan design. The square 
FSR measures velocity of the 
middle and index finger 

Chapter 

4 

T 

(a)       (b) 
Figure 4.1 Pictures showing EBayan’s birth on 

a slab of wood. 



 

18181818 

striking, while the long FSR measures force and position of the heel of the 
left hand, to determine pitch. When the square FSR was tapped once and 
released, a MIDI message was encoded with a Ga NOTE ON, with the 
pitch byte determined by the long FSR and the velocity determined by the 
force measured by the square FSR.   To simulate a Ka stroke, it was simply 
decided that when the square FSR was held down by the entire slap of the 
hand, then a Ka NOTE ON would be triggered, with the velocity 
determined by force on the square FSR.  

 
 

EBayan’s Initial BASIC Stamp Carrier Board: 
 
Figure 4.2 and Figure 4.3 describe the circuit designs for the long 

FSR and the square FSR respectively, showing connections to the different 
pins of the BASIC Stamp and to the analog-to-digital converter (ADC). 
The ADC used is Linear Technology’s LTC 1298 12-bit ADC Chip which 
comes in Parallax’s AppKit.20 The circuit design used to wire the ADC is 
shown in Figure 4.4 (a). Figure 4.4 (b) shows the connections made to 
create the MIDI OUT port.    

 
 
 
 

Figure 4.2 Drawings showing circuitry to connect the long FSR on the EBayan 
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Figure 4.3 Drawing showing circuitry of first 
square FSR on the EBayan 

 (a) (b) 
Figure 4.4 Drawing (a) shows the circuitry design of A-to-D Converter for the EBayan.  

Drawing (b) shows the circuitry for the MIDI OUT port on the EBayan.
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EBayan 1.0 Design Problems: 
 

 The problem with this schematic was 
that the square FSR could not distinguish 
between a hand slapping Ka and fingers striking 
Ga. The thought was that when the square FSR 
was held down a Ka command would be sent 
through the MIDI OUT port. However, this did 
not work out, because fast finger strikes ended 
up sending Ka commands, and a Ga command 
would be sent out at the beginning of every Ka 
stroke. Figure 4.5 shows the EBayan at this point. 

 
  

December 15th, 2001 
   
EBayan 2.0: Addition of a Square FSR  

  
A solution to the problem described above was to add another 

square FSR above the existing square FSR that can only be reached by 
fingers when the left hand slaps the Ka stroke. Figure 4.6 shows a layout of 
EBayan 2.0. The top square FSR (referred to as Slapper) is used to capture 

Ka stroke events, when a player slaps 
down with their left hand. If it receives 
a signal, then the other two FSRs are 
ignored. The square FSR in the middle 
(referred to as Striker), captures Ga 
stroke events, when struck by the 
middle and index finger of the left 
hand. The long FSR (referred to as 
Bender) controls the pitch of the Ga 
stroke events as it did in EBayan 1.0.  
 

 
 The Slapper FSR is different than the Striker FSR, because it uses an 
RC time circuit to trigger events, rather than going through a channel on the 
ADC. The force on the Bender FSR is being captured by a RC time circuit, 
while the position is going through channel 1 of the ADC. The Slapper FSR 
is attached to pin 7 as shown in Figure 4.7. Figure 4.8 shows the picture of 
the BASIC Stamp Carrier Board for the EBayan at this stage. 

Figure 4.5 EBayan 1.0 

Figure 4.6 Picture showing EBayan 2.0 
FSR layout 
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January 15th, 2002 
   
EDahina 1.0:  
 

To implement the EDahina, four 
FSRs were used: two long FSRs, one 
square FSR, and one small FSR attached 
to a circular piece cardboard. Figure 4.9 
shows a layout of these FSRs. The small 
FSR triggers a Tit stroke event. It 
measures the velocity of the index finger’s 
strike. The square FSR triggers a Tira 
stroke event. It measures the velocity of 
the hand slapping the top of the drum. If 
the Tira FSR is struck, all other FSRs are 
ignored. If the Tit FSR is struck, both long 
FSRs are ignored. The rightmost long FSR 

in Figure 4.9, is the ring finger FSR, and the leftmost long FSR is the index 
finger FSR. If there is a little force on the ring finger FSR (modeling a 
mute), and the index finger FSR is struck at the edge of circle, a Na stroke 
is triggered. If the index finger FSR is struck near the center of the circle, a 
Ta stroke is triggered. If there is no force on the ring finger FSR, and the 
index finger FSR is stuck, then a Tu stroke is triggered. When the ring 
finger FSR is struck with enough force, and not held down, then a Ti 

Figure 4.9 Picture showing EDahina 
FSR layout 

Figure 4.8: Picture showing BASIC 
Stamp Carrier Board for EBayan 

2.0 

Diagram showing RC Time 
circuit of the Slapper FSR 
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stroke is triggered. Thus the modeling was completed for every stroke 
that was discussed in Chapter 2.  

 
For this drum, two analog-to-digital converters were used. Each 

ADC had one square FSR going into channel 0, and position data coming 
in from one long FSR going into channel 1. Table 4.1 describes how the 
variables are collected. 

 
FSR VARIABLE COLLECTION 
Ring Finger (long) Velocity RC Time 
Index Finger (long) Velocity RC Time 
Tira (square) Velocity Channel 0 on ADC A 
Ring Finger (long) Position Channel 1 on ADC A 
Tit (square) Velocity Channel 0 on ADC B 
Index Finger (long) Position Channel 1 on ADC B 

 
 

 
Figure 4.10 shows design circuitry used to obtain velocity and 

position of the Ring Finger FSR. Figure 4.11 shows design circuitry to 
obtain velocity and position of the Index Finger FSR. Figure 4.12 (a) shows 

Table 4.1: Table describing how variables are collected for EBayan 1.0 

Figure 4.10: Drawing describing circuit design of the EDahina’s Ring Finger FSR 
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the circuit design to obtain velocity of Tira FSR, and Figure 4.12 (b) shows 
circuit design to obtain velocity of Tit FSR. Details about ADC A and ADC 
B are shown in Figure 4.13 (a) and (b) respectively. The MIDI OUT port on 
the EDahina is wired in the same way as the EBayan.   Figure 4.14 shows a 
picture of the BASIC Stamp Carrier Board for the EDahina 1.0.  
 

Figure 4.11: Drawing describing circuit design of the EDahina’s Index Finger FSR 

Figure 4.12: Drawing (a) shows the circuitry design of Tira FSR for the EDahina.  
Drawing (b) shows the circuitry design of the Tit FSR for the EDahina. 
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ETabla 1.0:  First User Test  

 
The ETabla 1.0 is the combination 

of the EBayan 2.0 and EDahina 1.0. 
Figure 4.15 shows a picture of the 
controllers in their constructed 
encasements for the first time. Manjul 
Bhargava, a musician who has been 
playing Tabla for 10 years, tested the 
ETabla at this point. He successfully was 
able to trigger all the traditional Tabla 
strokes discussed in Chapter 2, but with 
a margin of error. He hypothesized that 
the errors occurred because the ETabla 
1.0 was not stable, as the slab of wood Figure 4.15: The Electronic Tabla 

Controller 

 (a) (b) 
Figure 4.13: Drawing (a) shows the circuitry design of A-to-D Converter A  for the EDahina.  

Drawing (b) shows the circuitry design of A-to-D Converter B  for the EDahina. 

Figure 4.14: Picture showing BASIC Stamp Carrier Board fo EDahina 1.0 
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and piece of cardboard were simply sitting on top of a Tabla shell, without 
any support.    

 
 

March 7th, 2002  
   
ETabla 2.0: Constructing the ETabla Encasement  

  
One of the goals of the project is to make the ETabla’s encasement 

look and feel like a real Tabla. To achieve this, a professional millwork 
foreman, named Brad Alexander was hired to help create custom wood 
pieces for the ETabla. Brad runs County Cabinet Shop, Inc. in Princeton, 
New Jersey.  
 

 
The starting point was to draw designs for the custom pieces on 

AutoCad software. The AutoCad drawing would then be converted to 
Gcode which machinery would cut out of wood. This point-to-point 
computer controlled machine is shown on the left of Figure 4.16. Three 
pieces were designed. The first was the top cover for the EDahina, shown 
in Figure 4.17 (a). This piece snuggly plugged into the hole on the 
EDahina and had 16 holes for roping and holes to fit the FSRs in the 
desired schematic. The second piece was a larger version of the EDahina’s 
top cover, which would fit the EBayan, shown in Figure 4.17 (b). The third 
piece was a bottom ring which could fit both the EDahina and EBayan to 
help rope the drums together. Figure 4.17 (c) shows a group of these rings. 

Figure 4.16: Pictures showing professional Wood Working Machinery at County Cabinet Shop, 
Inc. 
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Long, cylindrical pieces of wood were cut for the EDahina to make 

it look like a real Tabla. Rope was purchased that could fit through the 
holes that were drilled in all the pieces. This rope was dyed black as 
shown in Figure 4.18 (a).  The top covers, the bottom rings and the 
cylindrical pieces of wood were all painted black as shown in Figure 4.18 
(b) and (c).   

 
 

 (a)  (b)  (c) 
Figure 4.17: Pictures showing custom wooden pieces created at County Cabinet Shop, Inc. 

 (a) (b) (c) 
Figure 4.18: Pictures showing painting process of the ETabla 2.0. 

 (a) (b) (c) 
Figure 4.19: Pictures showing Technology integrated into encasement of the ETabla 2.0. 



 

27272727 

 Holes were drilled into the EDahina so that the BASIC Stamp 
Carrier Board and the MIDI OUT port could be accessed, as shown in 
Figure 4.19 (a). The FSRs were mounted onto the top covers as shown in 
Figure 4.19 (b) and (c). The drums were roped and put together.  
 
 The PBASIC code was modified to work through the Roland 
HandSonic, which is a professionally made drum controller which has 
hundreds of different drum settings in its sound bank. The HandSonic’s 
sound bank has three settings for Tabla. The ETabla was set up to trigger 
the correct sound based on which FSR was struck. PBASIC code for the 
ETabla is included  in Appendix B (Dahina2HS.bs2 and Bayan2HS.bs2).  

 
ETabla 2.0: Design Problems:     
 
 The ETabla 2.0 is shown in 
Figure 4.20. At this point, there were a 
few problems which needed to be 
addressed. The BASIC Stamp Carrier 
Board and the MIDI OUT port on the 
EDahina kept slipping inside the 
encasement. Nuts and bolts were 
added to fix this problem. Also LEDs 
were required to help debugging. It 
would be nice to know whether the 
BASIC Stamp is receiving power and 
if it is sending messages.  Also, the FSRs needed to be protected by some 
covering which still shows their location. 

 
 

March 23rd, 2002  
 
ETabla 2.0: User Testing: 
 
 The response time of the EDahina was illustrated by user testing. A 
metronome was used to measure the rate at which one can strike a 
particular FSR before it becomes unreliable. To design this user test, I took 
the test myself. I played the EDahina through the Roland HandSonic. 
Below is a chart showing the response times of the EDahina by stroke. 
There is one strike per metronome click tested for each stroke. A * denotes 
if the sound response is immediate with no problems.  

Figure 4.20: Picture showing ETabla 2.0 
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Clicks per 
minute: 

60 70 80 900 100 110 120 130 140 150 160 170 

Tira Stroke * * * * * * * * * * * * 
Tit Stroke * * * * * * * * * * * * 
Ring Finger FSR 
(Ta stroke) 

*            

Index Finger 
FSR(Na Stroke) 

* * * * * * * * *    

Index Finger FSR 
(Ta Stroke) 

* * * * * * * * * *   

Index Finger FSR 
(Tu Stroke) 

* * * * * * * * * * *  

 
From this user test, it was clear that the two FSRs which only 

measure position were responding well. However, the long FSRs were 
running slow. This could be because the force variable for the long FSR is 
captured through RC time rather than on a channel on the ADC. RC time 
is slower. I also felt that the Ring Finger FSR was not calibrated correctly 
in the PBASIC code and thus finger strike responses were difficult to pick 
up. 
 
To solve these time problems, an upgrade from the BASIC Stamp II to the 
BASIC Stamp IIsx was required for reasons described in Chapter 3.  
 
  
April 3rd, 2002  
 
ETabla 3.0: Upgrading to the BASIC Stamp IIsx: 
 
 The new micro controller was upgraded on both the EDahina and 
EBayan. The chips should now run 2.5 times faster. There were three 
modifications needed to upgrade from the BASIC Stamp II to the BASIC 
Stamp IIsx. First, new software which can compile PBASICIIsx code 
needed to be installed. Second, variables which are captured by RC time 
were double in value, and thus the PBASIC code needed to be 
recalibrated. Third, the serout command needed to be modified from: 

serout 8. 12. 1. [144, 70. RfA] 
to: 

serout 8. 60. 1. [144, 70. RfA] 
This variable is the timing variable of the MIDI message and is thus 
effected by the change in speed of the micro controller. Code for the 
PBASICIIsx code is included in Appendix B. 
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ETabla 3.0: User Testing: 
 
 I now requested Manjul Bhargava to play Tin Taal (described in 
Chapter 2) and tracked how fast he could play each stroke. Manjul 
successfully played a recognizable Tin Taal using the ETabla 3.0 at a 
moderate tempo.  
 
 Manjul then tested the response time of the EDahina. Below is a 
chart showing the results of his tests. There is one strike per metronome 
click. A * denotes if the sound response is immediate with no problems.  
 
 

Clicks per 
minute: 

140 160 180 200 220 240 260 280 300 320 340 360 

Tira Stroke * * * * * * * * * * *  
Tit Stroke * * * * * * * * * *   
Ring Finger FSR 
(Ta stroke) 

* * * * *        

Index Finger 
FSR(Na Stroke) 

* * * *         

Index Finger FSR 
(Ta Stroke) 

* * * *         

Index Finger FSR 
(Tu Stroke) 

* * * *         

 
The Ta stroke on the Ring Finger FSR was the slowest for the 

ETabla 2.0 user test, only being able to be hit at 60 beats per minute. With 
the new upgrade, the ETabla 3.0 could now do the same strike 3.5 times 
faster at 220 beats per minute! This was a major improvement. The Tira 
and Tit strokes were very fast and were acceptable for performance. The 
next goal was to raise every stroke close to this level.  

 
Manjul complained that the two long FSRs were generally difficult 

to strike and get a response. This could be fixed with recalibration. He also 
recommended that the edge of the Index Finger FSR should always play a 
Na stroke and the center should always play a Tu stroke. This 
improvement would make the response time faster.   
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April 6th, 2002  
 
ETabla 4.0: Optimization of the PBASIC code: 
 
 To try increasing the response time of the ETabla, the PBASIC code 
was optimized to run faster. It was confirmed that no mathematical 
manipulation of variables occurred unless they needed to for that 
particular event. This involved moving some lines of code into and out of 
different if conditions. Then all divide operations were converted to shift 
right operations to save instruction time. Thus “divide by 4” was replaced 
by “shift right 2”.  Next, the position variable for the Ring Finger FSR was 
eliminated, as it is not used in triggering the HandSonic. Adjustments 
were also made to the Index Finger FSR, as Manjul recommended.  
 
 
 
April 23rd, 2002  
 
ETabla 5.0: Triggering the STK Toolkit: 
 
 The ETabla was modified to run two types programs: one to trigger 
the HandSonic, and the other to trigger the STK Toolkit Tabla sounds, 
discussed in Chapter 6. For MIDI messages, the STK Toolkit separated the 
Bayan onto channel 0 and the Dahina onto channel 1. It also did not 
require any NOTE OFF messages, so all were removed. The linear 
variables on the EDahina, now had the functionality of changing 
resonance, which the Handsonic could not do. The edge of the EDahina 
was programmed to be most resonant, while the center of the drum was 
programmed to be least resonant. The Long FSR on the EBayan sent POLY 
PRESSURE MIDI messages to change the pitch of the Ga strokes real-time. 
Thus pitch bending was achieved and functional. PBASICIIsx code that 
triggers the STK Toolkit is included in Appendix B.      
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ETabla 5.0: Final Touches: 
 
 Final adjustments to the ETabla were 
made to ensure it could be used in 
performance on April 25th, 2002 in Taplin 
Auditorium. This concert is described in 
Chapter 8 in detail. A protective substance 
covering the FSRs was created, and each  drum 
was assembled using rope. A final picture of 
the ETabla is shown in Figure 4.21.  
 

Figure 4.21: Picture showing 
the ETabla in its final form 
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Sound Analysis of the 
Tabla 
“The Musical Drum”21 

 

his chapter describes modal analysis of the Tabla. It defines modal 
analysis and other digital signal processing terms used to describe 
experimentation of the sound of the Tabla. Then it presents 

experiments performed in 1919, by scientist C.V. Raman who coined the 
name for the Tabla: “The Musical Drum”21. It finally documents the 
experiments I have done using MATLAB programming to analyze the 
sounds of the Tabla, and compare the data obtained with the results of 
C.V. Raman. The information learned from this process will be used to 
create a physical model of the sound of the Tabla, which is described in 
Chapter 6.   

  

What is Modal Analysis?  
  
 Sound is vibration that propagates through air, created by the 
oscillations of objects such as vocal chords, musical instruments, and 
speakers. These vibrations are converted to the realm of digital audio by 
recording the sound using a microphone, which converts the varying air 
pressure into varying voltage. An analog-to-digital converter measures 
the voltage at regular intervals of time. For all recordings in this analysis, 
there are 44,100 samples per second. This is known as the sampling rate 
(SR). The data the computer stores after the analog-to-digital conversion is 
the sound as a function of time.22 Figure 5.1 is a graph of a sound of a 
Bayan as a function of time.  

Chapter 
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When one plucks a string or blows air through a tube, it begins a 

repeating pattern of movement, known as oscillation. If a sound has a 
repeating pattern of movement it has a tone and pitch (harmonic), which 
distinguishes it from noise (inharmonic). The tone and pitch of the sound 
can be determined by a sine wave with a particular frequency.22 The 
cochlea, an organ in the inner ear enables humans to detect these 
frequencies. The cochlea is a spiral shaped sum of tissue, with thousands 
of miniscule hairs that vary in size. The shorter hairs resonate with higher 
frequencies, while the longer hairs resonate with lower frequencies. So the 
cochlea converts the air pressure to frequency information, which the 
brain can use to classify sounds.23 The Fourier Transform is a 
mathematical technique that does this exact process. It converts sounds 
represented in the time domain to sound represented in the frequency 
domain.22  

 
Fourier analysis is based on the important mathematical theorem 

formulated by Joseph Fourier (1768-1830): “Any periodic vibration, 
however complicated, can be built up from a series of simple vibrations, 
whose frequencies are harmonics of a fundamental frequency, by 
choosing the proper amplitudes and phases of these harmonics”24. The 
Fourier Transform takes a periodic function of time F(t) and turns it into a 
summation of cosine and sine waves. A periodic function is transformed 
into the Fourier Series by the equation below: 
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Figure 5.1: Graph of sound of the Bayan as a function of time. 
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The term am is the average waveform. Coefficients bm and cm are the 
weights of the cosine and sine terms, which describe different 
frequencies.22  
 

With the Fast Fourier Transform (FFT), one can find the peaks of a 
sound, in the frequency domain. These peaks are known as modes. In this 
chapter the modes of the Tabla will be analyzed.  

 
 
C.V. Raman’s Tabla Sound Analysis  
  

Nobel Prize winning scientist C.V. Raman published his works on 
the acoustic characteristics of the Tabla in 1934.21 He explains that the 
drums have two features which enable strikes to emit harmonic tones 
which sustain, distinguishing the Tabla from any other drum in the world. 
First is the heavy wooden shell on which the pudi (drum-head) is stretched 
upon. Second is the weight added to the pudi of iron-filings, rice, charcoal, 
and gum, which is precisely applied to match the sustaining tone that the 
acoustic of the shell prescribe. Raman further explains that the duration of 
the tone is a function of the width of the ring of leather which holds the 
pudi in place. A narrow ring emits a prolonged, bright tone, whereas a 
broad ring emits a dull, short-lived tone. 

 
The first nine normal modes of the membrane can be split into five 

harmonic tones because of the unique construction of the Tabla. The 
normal modes of a harmonic circular membrane described by Raman, are 
shown in Figure 5.2. The dotted lines denote nodal lines.  

 

 
 

 
Figure 5.2: Figure showing Normal modes of a Harmonic Membrane 21 
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The first mode of vibration occurs when the flat fingertips slap the 
center of the drum and quickly releases. This mode is without any interior 
nodal lines. This is the fundamental mode. The second harmonic occurs 
when the membrane vibrates in two separate parts, divided by a nodal 
diameter. This mode is excited when the flat palm slaps the edge of the 
pudi while a finger gently lays upon a diameter.  

 
The third harmonic mode occurs when the pudi’s vibration is 

separated by two parallel nodal lines. This mode is excited by the Na 
stroke, which makes the pudi vibrate in three circular regions. The fourth 
harmonic occurs when the pudi’s vibration is separated into three parallel 
regions. This could be exerted by adding the middle finger as a damper in 
the Na stroke, dividing the pudi into four regions. The fifth harmonic is 
excited by splitting the pudi into five different parts, separated by four 
nodal lines. This is generally very difficult to achieve on most Tabla. 21  

 

         

Modal Analysis using MATLAB  
 
 This section will describe modal analysis of different Tabla strokes 
using MATLAB programming. I am trying to observe if in fact the Tabla 
emits a harmonic tone, validating it as a “musical drum” which C.V. 
Raman observed. I will outline the evolution and development of software 
that can be used to obtain the modes of any sound file. All MATLAB code 
described in this section can be found in Appendix D.  
 

The sound files used in this analysis can be found on the CD at the 
back of this report. They are taken from Zakir Hussain’s, Remember 
Shakti, CD 2, Track 1.25 The following chart describes how I will refer to 
these sound files: 
 
TRACK Sound File Name Drum Stroke 
1 new-B.wav Bayan Ga 
2 D-na.wav Dahina Na 
3 D-tu.wav Dahina Tu 
4 D-ta.wav Dahina Ta 
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FFT: 
 

The first program I wrote was a function that calculates and graphs 
the FFT of the first frame of a given sound file. I did this using Matlab, as 
it has functions that support sound files. This function is called myFFT.m, 
and takes in the digital array containing the sound file and the FFTSize. 
The FFT size is the number of bins that the frequency domain is broken 
into. To convert the frequency in hertz given the bin, one uses the 
following equation: 

 

)(
))(()(

FFTSize
binteSamplingRaHzFrequency =  

 
 I graphed the first frame of sound file new-B.wav, with the 
following Matlab command: 

array = myFFT('new-B.wav', 44100); 
The program output the following graph: 
 

 
 

From this graph, one can determine that the first frame of the Ga 
stroke has peaks at low frequency bins. However, one cannot determine 
how these frequencies change over time. This is implemented in the next 
program.  
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Short-Time Fourier Transform (STFT):  
 

Now I need to calculate the FFT for every frame in the sound file. 
This is known as a STFT. I implemented this in Spectrogram1.m. This 
program takes in the sound file, the sampling rate (which is always 44,100 
Hz for this analysis), and whether one wants a linear FFT or a logarithmic 
FFT. In a logarithmic graph, one can see more peaks then in a linear 
graph, as the amplitudes are put through a logarithm function. This 
decreases the distance between very high peaks and lower peaks, for 
easier visual analysis.  
 

I first graphed the linear version of sound file new-B.wav, with the 
following Matlab command: 

array = Spectrogram1('new-B.wav', 44100, 'Lin'); 
The program output is the graph below: 

 

 
 

I then graphed the logarithmic version of the same sound file new-B.wav, 
with the following Matlab command: 

array = Spectrogram1('new-B.wav', 44100, 'Log'); 
The program output is the graph on the next page: 
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As one can see, the logarithmic version of the Spectrogram portrays more 
detail to the human eye, for easier analysis. We can see from these graphs 
that the Bayan stroke Ga has many peaks at lower frequencies. However 
these graphs do not help determine exactly what frequencies these peaks 
occur at. They just give a general sense of what the sound file’s 
frequencies are over time.    
 
 
BREAKING UP THE STFT: 
  
 Now I am going to create a program that splits the STFT into three 
parts: high frequency, middle frequency, and low frequency, for sharper 
visual analysis. I am also going to average every ten frames together for 
easier analysis. This program is implemented in Spectrogram2.m . This 
program takes in the sound file, the sampling rate, and whether one wants 
a linear FFT or a logarithmic FFT. 
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I first graphed the linear version of sound file new-B.wav, with the 

following Matlab command: 
array = Spectrogram2('new-B.wav', 44100, 'Lin'); 

The programs output the following four graphs: 
 

I then graphed the logarithmic version of sound file new-B.wav, 
with the following Matlab command: 

array = Spectrogram2('new-B.wav', 44100, 'Log'); 
The program output the following four graphs, shown on the next page: 
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 From these low frequency graphs, one can see that the highest peaks 
are below bin 50. From the high and middle frequency graphs, one can see 
that the Ga stroke has higher and middle frequencies in the initial attack, 
which then die down fairly quickly. However, it is interesting that towards 
the end of the duration of the sound, the high and middle frequencies 
return to their initial amplitudes. One can attribute this quality to force 
exerted by the heel of the hand on the head of the drum, which creates a 
pitch bending effect. The more force the higher the tone. This explains why 
the graphs look the way they do. This is a key finding in our analysis! 
 
PEAK FINDING TRIAL 1: 
 
 Next, I created a program that finds the peaks of the FFT, and how 
they vary over time. This program graphs the peaks on a 3D axis. It prints 
out both the linear version of the graph and logarithmic version. I 
implemented this program in Spectrogram3.m. It takes in the sound file, the 
sampling rate, and an accuracy number, which determines how precise 
the peak search is. The higher the accuracy, the more number of peaks it 
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will find. This program uses a function called HillClimbing.m (written by 
Tae Hong Park), which finds the maximum peaks by determining change 
in slope.  

 
I first graphed the sound file new-B.wav, with an accuracy of 40, 

with the following Matlab command: 
array = Spectrogram3('new-B.wav', 44100, 40); 

It created the following two graphs: 
 

       
 

I then graphed the sound file new-B.wav, with an accuracy of 20, 
with the following Matlab command: 

array = Spectrogram3('new-B.wav', 44100, 40); 
It created the following two graphs: 
 

       
 

An accuracy of 40 and an accuracy of 20 gave the same linear graph. 
However an accuracy of 40 gave a myriad of peaks, where as 20 gave a more 
manageable amount. From the way I find the maximum peaks in this 
implementation, I do not have a consistent number of peaks per time frame. Also I 
do not have a way of determining what the peaks are exactly. This will have to be 
changed in the next implementation.   
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PEAK FINDING TRIAL 2: 
 
  The next program finds the six highest peaks of the FFT for each 
frame of the sound file.  It then converts the bins to hertz, by the equation: 
 

)(
))(()(

FFTSize
binteSamplingRaHzFrequency =  

 
 These values are printed out for the linear version of the FFT. This 
program is implemented in Spectrogram4.m. It takes in the sound file and 
the sampling rate as arguments. This program calls a function called 
sixpeaks.m, to find the maximum peaks of the FFT of each frame. This 
function determines the peaks by first finding the highest point of the 
entire FFT, storing it, and then zeroing it out to the minimum value of the 
FFT. It then zeros out all the points of that hill until the slope changes on 
either side. It then goes and finds the next maximum value. It repeats this 
process for six peaks.    
 

I graphed the sound file new-B.wav, with the following Matlab 
command:   

array = Spectrogram4('new-B.wav', 44100); 
It created the following two graphs, followed by the peaks for 

every frame of the linear FFT (In order of descending magnitude): 
 

      
 

129.199219  172.265625  215.332031  258.398438  689.062500  301.464844 
129.199219  344.531250  215.332031  387.597656  430.664063  473.730469 
129.199219  387.597656  430.664063  215.332031  172.265625  301.464844 
129.199219  172.265625  387.597656  215.332031  301.464844  258.398438 
129.199219  172.265625  301.464844  215.332031  258.398438  344.531250 
129.199219  301.464844  387.597656  430.664063  172.265625  258.398438 
129.199219  301.464844  387.597656  430.664063  215.332031  344.531250 
129.199219  301.464844  387.597656  430.664063  344.531250  215.332031 
129.199219  301.464844  387.597656  430.664063  473.730469  215.332031 
129.199219  301.464844  473.730469  430.664063  215.332031  387.597656 
129.199219  301.464844  387.597656  430.664063  215.332031  473.730469 
129.199219  301.464844  387.597656  430.664063  473.730469  215.332031 
129.199219  301.464844  387.597656  473.730469  430.664063  215.332031 
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129.199219  301.464844  473.730469  430.664063  387.597656  172.265625 
129.199219  301.464844  387.597656  430.664063  473.730469  344.531250 
129.199219  301.464844  430.664063  172.265625  387.597656  473.730469 
129.199219  387.597656  301.464844  473.730469  215.332031  430.664063 
129.199219  473.730469  301.464844  172.265625  430.664063  387.597656 
129.199219  301.464844  387.597656  430.664063  473.730469  215.332031 
129.199219  301.464844  387.597656  430.664063  473.730469  215.332031 
129.199219  301.464844  387.597656  473.730469  215.332031  430.664063 
129.199219  301.464844  473.730469  430.664063  172.265625  215.332031 
129.199219  301.464844  387.597656  215.332031  430.664063  473.730469 
129.199219  301.464844  387.597656  430.664063  215.332031  473.730469 
129.199219  387.597656  301.464844  473.730469  430.664063  215.332031 
129.199219  387.597656  473.730469  172.265625  301.464844  430.664063 
129.199219  430.664063  301.464844  387.597656  172.265625  215.332031 
129.199219  301.464844  387.597656  430.664063  344.531250  86.132813 

129.199219  301.464844  387.597656  473.730469  172.265625  430.664063 
129.199219  301.464844  430.664063  215.332031  387.597656  172.265625 
129.199219  301.464844  430.664063  387.597656  215.332031  258.398438 
129.199219  387.597656  301.464844  430.664063  215.332031  473.730469 
129.199219  301.464844  387.597656  430.664063  172.265625  473.730469 
129.199219  301.464844  387.597656  430.664063  258.398438  215.332031 
129.199219  301.464844  215.332031  430.664063  387.597656  172.265625 
129.199219  215.332031  387.597656  301.464844  172.265625  430.664063 
129.199219  215.332031  387.597656  301.464844  430.664063  473.730469 
129.199219  387.597656  215.332031  301.464844  172.265625  430.664063 
129.199219  258.398438  172.265625  387.597656  301.464844  215.332031 
129.199219  430.664063  215.332031  387.597656  301.464844  172.265625 
129.199219  387.597656  215.332031  430.664063  172.265625  86.132813 

129.199219  215.332031  258.398438  301.464844  430.664063  387.597656 
129.199219  301.464844  387.597656  430.664063  215.332031  258.398438 
129.199219  387.597656  301.464844  430.664063  172.265625  86.132813 

129.199219  258.398438  430.664063  387.597656  301.464844  172.265625 
129.199219  215.332031  387.597656  301.464844  430.664063  258.398438 
129.199219  301.464844  387.597656  172.265625  258.398438  215.332031 
129.199219  301.464844  172.265625  430.664063  387.597656  344.531250 
129.199219  215.332031  172.265625  387.597656  301.464844  258.398438 
129.199219  215.332031  387.597656  430.664063  86.132813  301.464844 
129.199219  215.332031  172.265625  301.464844  258.398438  387.597656 
129.199219  215.332031  301.464844  258.398438  344.531250  387.597656 
129.199219  215.332031  301.464844  172.265625  258.398438  387.597656 
129.199219  215.332031  301.464844  387.597656  172.265625  258.398438 
129.199219  301.464844  215.332031  387.597656  258.398438  172.265625 
129.199219  301.464844  215.332031  258.398438  387.597656  172.265625 
129.199219  301.464844  215.332031  344.531250  86.132813  387.597656 
129.199219  301.464844  215.332031  387.597656  344.531250  172.265625 
129.199219  172.265625  215.332031  301.464844  387.597656  344.531250 
129.199219  215.332031  301.464844  172.265625  344.531250  86.132813 
129.199219  215.332031  301.464844  172.265625  258.398438  86.132813 

129.199219  301.464844  215.332031  172.265625  86.132813  344.531250 
129.199219  172.265625  301.464844  86.132813  43.066406  215.332031 
129.199219  86.132813  172.265625  43.066406  344.531250  301.464844 
129.199219  86.132813  172.265625  43.066406  215.332031  344.531250 
129.199219  172.265625  86.132813  215.332031  43.066406  344.531250 
129.199219  172.265625  215.332031  86.132813  301.464844  258.398438 
129.199219  172.265625  344.531250  215.332031  86.132813  301.464844 
129.199219  172.265625  86.132813  43.066406  344.531250  215.332031 
129.199219  86.132813  172.265625  43.066406  215.332031  258.398438 
129.199219  172.265625  86.132813  43.066406  258.398438  215.332031 
129.199219  172.265625  215.332031  86.132813  258.398438  387.597656 
129.199219  172.265625  86.132813  215.332031  43.066406  344.531250 
129.199219  172.265625  86.132813  43.066406  387.597656  215.332031 
172.265625  129.199219  258.398438  215.332031  86.132813  344.531250 
172.265625  129.199219  86.132813  43.066406  258.398438  215.332031 
129.199219  172.265625  215.332031  86.132813  301.464844  387.597656 
129.199219  172.265625  86.132813  215.332031  43.066406  258.398438 
172.265625  129.199219  86.132813  215.332031  43.066406  258.398438 
172.265625  129.199219  215.332031  258.398438  301.464844  86.132813 

172.265625  129.199219  215.332031  86.132813  43.066406  258.398438 
172.265625  129.199219  215.332031  86.132813  258.398438  387.597656 
172.265625  129.199219  215.332031  86.132813  43.066406  258.398438 
172.265625  215.332031  129.199219  258.398438  344.531250  387.597656 
215.332031  129.199219  258.398438  301.464844  86.132813  430.664063 
215.332031  129.199219  172.265625  258.398438  301.464844  86.132813 

172.265625  215.332031  129.199219  258.398438  344.531250  301.464844 
215.332031  129.199219  258.398438  301.464844  86.132813  344.531250 
215.332031  129.199219  172.265625  258.398438  301.464844  344.531250 
172.265625  215.332031  129.199219  301.464844  258.398438  344.531250 
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From the graphs one can see that six highest peaks are in the lower 
frequencies, for both the logarithmic version and the linear version. From 
the frequencies printed out one can see that peaks range from 86.1328 Hz 
to 430.6640 Hz. However, there are too many numbers printed out to do a 
proper analysis. In the next implementation I will fix this.  

 
 

PEAK FINDING TRIAL 3: 
   
 In the next program, a variable number peaks, determined by the 
user, can be found for an averaged number of frames. The number of 
averaged frames is a variable that can also be determined by the user. This 
program is implemented in Spectrogram5.m. It takes in the sound file, the 
sampling rate, whether one wants a linear FFT or a logarithmic FFT, k 
number of frames to be averaged, the number of peaks to find, the FFT 
size, and whether one wants the peaks printed out in order of ascending 
magnitude or ascending frequency. This program calls a function peaks.m 
that finds the maximum peaks for each k averaged FFT frames. This 
function uses the same algorithm as sixpeaks.m discussed in Peak Finding 
Trial 2, except that it has a variable number of peaks.  
 
Analysis of Ga stroke:  
  
 I graphed the sound file new-B.wav, with the following Matlab 
command: 

array = Spectrogram5('new-B.wav', 44100, 'Lin', 10, 8, 1024, 'Bin'); 
It created the following graph, followed by the frequency in hertz as they 
change over time, in ascending frequency order:  
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129.199219   172.265625   215.332031   258.398438   301.464844   344.531250   387.597656   430.664063  
129.199219   172.265625   215.332031   301.464844   344.531250   387.597656   430.664063   473.730469  
129.199219   172.265625   215.332031   301.464844   344.531250   387.597656   430.664063   473.730469  
129.199219   172.265625   215.332031   258.398438   301.464844   387.597656   430.664063   473.730469  
86.132813     129.199219   172.265625   215.332031   258.398438   301.464844   387.597656   430.664063  
86.132813     129.199219   172.265625   215.332031   258.398438   301.464844   344.531250   387.597656  
43.066406     86.132813     129.199219   172.265625   215.332031   258.398438   301.464844   344.531250  
43.066406     86.132813     129.199219   172.265625   215.332031   258.398438   301.464844   387.597656  

 

I then wanted to see which peaks were the highest in order of Magnitude, 
so I typed in the following Matlab command: 
 

array = Spectrogram5('new-B.wav', 44100, 'Lin', 10, 8, 1024, 'Mag'); 
 
It gave the same graph as above with these numbers: 
 

129.199219 301.464844 387.597656 172.265625 430.664063 215.332031 344.531250 258.398438  
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031 172.265625 344.531250  
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031 172.265625 344.531250  
129.199219 301.464844 387.597656 215.332031 430.664063 172.265625 258.398438 473.730469  
129.199219 387.597656 215.332031 301.464844 430.664063 258.398438 172.265625 86.132813  
129.199219 215.332031 301.464844 172.265625 387.597656 344.531250 258.398438 86.132813  
129.199219 172.265625 86.132813 215.332031 43.066406 301.464844 344.531250 258.398438  
129.199219 172.265625 86.132813 215.332031 43.066406 258.398438 301.464844 387.597656 

 
I zoomed in on the important part of the linear version of the graph for the 
Ga stroke, which is shown on the next page: 



 

46464646 

 
 

I then looked at the logarithmic version of this sound file, by typing 
the following Matlab command: 

array = Spectrogram5('new-B.wav', 44100, 'Log', 10, 8 , 1024, 'Bin'); 
It created the following graph, followed by the frequency in hertz as they 
change over time, in ascending frequency order:  

 
129.199219 172.265625 215.332031 258.398438 301.464844 344.531250 387.597656 430.664063 
129.199219 172.265625 215.332031 301.464844 344.531250 387.597656 430.664063 473.730469 
129.199219 172.265625 215.332031 301.464844 344.531250 387.597656 430.664063 473.730469 
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129.199219 172.265625 215.332031 258.398438 301.464844 387.597656 430.664063 473.730469 
86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 387.597656 430.664063 
86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 344.531250 387.597656 
43.066406 86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 344.531250 
43.066406 86.132813 129.199219 172.265625 215.332031 258.398438 301.464844 387.597656 

 
I then wanted to see which peaks were the highest in order of Magnitude, 
so I typed in the following Matlab command: 

array = Spectrogram5('new-B.wav', 44100, ‘Log’, 10, 8, 1024, 'Mag'); 
It gave the same graph as above with these numbers: 

 
129.199219 301.464844 387.597656 172.265625 430.664063 215.332031 344.531250 258.398438 
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031 172.265625 344.531250 
129.199219 301.464844 387.597656 430.664063 473.730469 215.332031 172.265625 344.531250 
129.199219 301.464844 387.597656 215.332031 430.664063 172.265625 258.398438 473.730469 
129.199219 387.597656 215.332031 301.464844 430.664063 258.398438 172.265625 86.132813 
129.199219 215.332031 301.464844 172.265625 387.597656 344.531250 258.398438 86.132813 
129.199219 172.265625 86.132813 215.332031 43.066406 301.464844 344.531250 258.398438 
129.199219 172.265625 86.132813 215.332031 43.066406 258.398438 301.464844 387.597656 

 
I zoomed in on the important part of the logarithmic version of the graph 
for the Ga stroke, which is shown below: 
 

 
 
One can first notice that the logarithmic and linear versions of the 

graphs and data are close to identical in terms of frequency information, 
which is expected. Thus, for other sound file analysis, we will only look at 
the logarithmic version of the sound.  
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From the data, one can determine that the Ga stroke has a 
fundamental frequency of around 129 Hz, which is present throughout 
the sound file. It is also clear that 258 Hz (which is 2 * 129 Hz) is a mode 
and 387 Hz (which is 3 * 129 Hz) is a mode. Notice that these 2 modes are 
multiples of 2 and 3 of the fundamental pitch. This means that the Bayan 
creates a harmonic tone.21 One can also notice from the graphs that the 
tones lower frequency peaks that are not the fundamental, decay in 
amplitude over time.    
 
Analysis of Na stroke:    
  
 I graphed the sound file D-na.wav, with the following Matlab 
command: 

array = Spectrogram5('D-na.wav', 44100, 'Log', 7, 6, 1024, 'Bin'); 
It created the following graph, followed by the frequency in hertz as they 
change over time, in ascending frequency order:  
 

 
 

258.398438 344.531250 387.597656 430.664063 1033.593750 1378.125000 
172.265625 215.332031 387.597656 689.062500 732.128906 1033.593750 
129.199219 172.265625 387.597656 430.664063 689.062500 1033.593750 
43.066406 129.199219 172.265625 387.597656 430.664063 689.062500 
43.066406 129.199219 172.265625 387.597656 430.664063 689.062500 
43.066406 129.199219 172.265625 215.332031 301.464844 689.062500 
43.066406 129.199219 172.265625 215.332031 344.531250 689.062500 
43.066406 129.199219 172.265625 344.531250 387.597656 430.664063 
43.066406 129.199219 172.265625 258.398438 387.597656 689.062500 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
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43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 

 
I then wanted to see which peaks were the highest in order of 

Magnitude, so I typed in the following Matlab command: 
array = Spectrogram5('D-na.wav', 44100, 'Log', 7, 6, 1024, 'Mag'); 

It gave the same graph as above with these numbers: 
 

1033.593750 430.664063 387.597656 344.531250 1378.125000 258.398438 
1033.593750 689.062500 172.265625 387.597656 215.332031 732.128906 
1033.593750 387.597656 689.062500 172.265625 430.664063 129.199219 
689.062500 430.664063 387.597656 43.066406 129.199219 172.265625 
129.199219 689.062500 387.597656 43.066406 172.265625 430.664063 
172.265625 129.199219 215.332031 43.066406 689.062500 301.464844 
129.199219 43.066406 172.265625 689.062500 344.531250 215.332031 
43.066406 129.199219 387.597656 172.265625 430.664063 344.531250 
43.066406 172.265625 129.199219 387.597656 258.398438 689.062500 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 

 
From the data, one can determine that the Na stroke has a 

fundamental frequency of around 172 Hz. It is also clear that 344 Hz 
(which is 2*172 Hz) is a mode, 689 Hz (which is around 4 * 129 Hz) is a 
mode, 1033 Hz (which is around 6*172 Hz), and 1378 Hz (which is around 
8 * 172 Hz). Notice that these four modes are multiples of 2, 4, 6, and 8 of 
the fundamental pitch. This means that the Dahina creates a harmonic 
tone.21 One can also notice from the graphs that the modes decay in 
amplitude over time. The 43 Hz which shows up in the data, is the end of 
the sound file (due to the hum of the recording), not the sound of the 
drum.   

 
 

Analysis of Tu stroke:  
  
 I graphed the sound file D-tu.wav, with the following Matlab 
command: 

array = Spectrogram5('D-tu.wav', 44100, 'Log', 3, 6, 1024, 'Bin'); 
It created the following graph, followed by the frequency in hertz as they 
change over time, in ascending frequency order: 
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215.332031 301.464844 344.531250 387.597656 430.664063 473.730469 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
43.066406 344.531250 387.597656 430.664063 473.730469 516.796875 
301.464844 344.531250 387.597656 430.664063 473.730469 516.796875 
43.066406 301.464844 344.531250 387.597656 430.664063 473.730469 
43.066406 344.531250 387.597656 430.664063 473.730469 516.796875 
43.066406 301.464844 344.531250 387.597656 430.664063 473.730469 
43.066406 301.464844 344.531250 387.597656 430.664063 473.730469 
43.066406 344.531250 387.597656 430.664063 473.730469 516.796875 
43.066406 86.132813 129.199219 172.265625 215.332031 473.730469 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 

 

I then wanted to see which peaks were the highest in order of 
Magnitude, so I typed in the following Matlab command: 

array = Spectrogram5('D-tu.wav', 44100, 'Log', 3, 6, 1024, 'Mag'); 
It gave the same graph as above with these numbers: 

 
387.597656 430.664063 344.531250 473.730469 215.332031 301.464844 
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875 
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875 
387.597656 430.664063 344.531250 473.730469 516.796875 301.464844 
387.597656 430.664063 344.531250 473.730469 516.796875 301.464844 
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875 
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875 
387.597656 430.664063 473.730469 344.531250 516.796875 301.464844 
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387.597656 430.664063 344.531250 473.730469 301.464844 516.796875 
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875 
387.597656 430.664063 344.531250 473.730469 43.066406 516.796875 
387.597656 430.664063 344.531250 473.730469 301.464844 516.796875 
387.597656 430.664063 344.531250 473.730469 301.464844 43.066406 
387.597656 430.664063 344.531250 43.066406 473.730469 516.796875 
387.597656 430.664063 344.531250 473.730469 43.066406 301.464844 
387.597656 430.664063 43.066406 344.531250 473.730469 301.464844 
387.597656 430.664063 43.066406 344.531250 473.730469 516.796875 
43.066406 86.132813 129.199219 172.265625 215.332031 473.730469 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 

 
From the data, one can determine that the Tu stroke has the same 

fundamental frequency of around 172 Hz as the Na stroke. It is also clear 
that 344 Hz (which is 2* 172 Hz) is a mode. Notice that this mode is a 
multiple of 2 of the fundamental pitch. It can also be determined that 215 
Hz and 430 Hz (2 * 215 Hz) are present. However, it makes sense that the 
Tu stroke has the same fundamental as the Na stroke. Either way, this 
means that the Dahina creates a harmonic tone.21 One can also notice from 
the graphs that the modes decay in amplitude over time. Once again, the 
43 Hz which shows up in the data, is the end of the sound file (due to the 
hum of the recording), not the sound of the drum.   
 
Analysis of Ta stroke:  
  
 I graphed the sound file D-ta.wav, with the following Matlab 
command: 

array = Spectrogram5('D-ta.wav', 44100, 'Log', 4, 6, 1024, 'Bin'); 
It created the following graph, followed by the frequency in hertz as they 
change over time, in ascending frequency order:  
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387.597656 430.664063 473.730469 516.796875 559.863281 602.929688 
43.066406 387.597656 430.664063 473.730469 516.796875 689.062500 
43.066406 387.597656 430.664063 516.796875 559.863281 645.996094 
43.066406 172.265625 387.597656 473.730469 645.996094 689.062500 
43.066406 387.597656 430.664063 516.796875 559.863281 689.062500 
43.066406 387.597656 430.664063 473.730469 559.863281 645.996094 
43.066406 387.597656 430.664063 473.730469 602.929688 689.062500 
43.066406 387.597656 430.664063 473.730469 645.996094 689.062500 
43.066406 86.132813 473.730469 516.796875 689.062500 732.128906 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 

 

I then wanted to see which peaks were the highest in order of 
Magnitude, so I typed in the following Matlab command: 

array = Spectrogram5('D-ta.wav', 44100, 'Log', 4, 6, 1024, 'Mag'); 
 

It gave the same graph as above with these numbers: 
 

387.597656 430.664063 473.730469 602.929688 559.863281 516.796875 
473.730469 387.597656 430.664063 689.062500 43.066406 516.796875 
430.664063 43.066406 387.597656 645.996094 516.796875 559.863281 
387.597656 689.062500 43.066406 473.730469 645.996094 172.265625 
43.066406 689.062500 387.597656 559.863281 430.664063 516.796875 
43.066406 473.730469 559.863281 387.597656 430.664063 645.996094 
430.664063 43.066406 387.597656 602.929688 689.062500 473.730469 
43.066406 387.597656 473.730469 689.062500 645.996094 430.664063 
43.066406 86.132813 473.730469 732.128906 516.796875 689.062500 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 
43.066406 43.066406 43.066406 43.066406 43.066406 43.066406 

 
From the data, one can determine that the Na stroke has a 

fundamental frequency of around 172 Hz. It makes sense that the 
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fundamental is the same for all three Dahina strokes we have analyzed. It 
is also clear that 344 Hz (which is 2* 172 Hz) is a mode, and 689 Hz (which 
is around 4 * 129 Hz) is a mode. Notice that these 2 modes are multiples of 
2 and 4 of the fundamental pitch. This verifies once again that the Dahina 
creates a harmonic tone. 21 One can also notice from the graphs that the 
modes decay in amplitude over time. Once again, the 43 Hz which shows 
up in the data, is the end of the sound file (due to the hum of the 
recording), not the sound of the drum.   
 
Sound Analysis Conclusion 
 

From this analysis one can determine that the Bayan and the 
Dahina studied have fundamentals of 129 Hz and 172 Hz respectively. 
Both drums have modes above the fundamental that are integer multiples 
of the fundamental frequency, making both the Bayan and the Dahina 
harmonic instruments. This concurs with analysis done by C.V. Raman in 
1919. However, my analysis must have been much easier to determine this 
result compared to Raman’s experiments, because of the power of the 
computer as a computational tool.  
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Sound Simulation 
Using MATLAB and STK Toolkit 

 

his chapter describes the process of creating computer generated 
Tabla sounds, by programming physical models which emulate the 
acoustic nature of the drums. It first describes attempts to generate 

sound using MATLAB programming of the Plucked String Model and 
different types of filters. It then proceeds to describe how the Tabla sound 
is programmed in STK Toolkit, a software developed at the Center  for 
Computer Research in Music and Acoustics at Stanford University, 
designed by Perry Cook and Gary Scavone. This implementation uses 
banded-waveguides to physically model the sound, designed by Georg 
Essl, a Ph.D.  student at Princeton University.   
 
 
MATLAB Simulated Sound 
 
Attempt 1: 

 
I started out by using the Plucked String Model to Simulate the 

Bayan. This means the filter equation was:   
 

y[n] = x[n] + .5*(y[n-N] + y[n-(N+1)]) 
 
I implemented this in the Matlab program called 

BayanSimulator2.m, found in Appendix E. One gives this program a start 
frequency and end frequency, and the program will morph between the 
two. This program runs through the above filter, and then through an 
ADSR (Attack, Decay, Sustain, Release) envelope.  The simulated sound is 
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recorded on Track 5 of the enclosed CD. The problem with it is that it 
sounds "too stringy" and does not sound like a drum. However I learned 
the details about the Plucked String Model by actually getting to program 
it (or rather hack with it). 

 
 

Attempt 2: 
 
Next, I created a CoefficientFinder.m program, which creates 2 

arrays, a and b to hold the coefficients for the equation: 

 
y[n] = a1*x[n] + a2*x[n-1] +a3*x[n-2]+....+b1*y[n-1]+b2*y[n-2]+b3*y[n-3]... 

 
I then put these two arrays into the MATLAB function filter to get my 
filtered equation. A graph of the filter I used is shown in the Figure below. 
It is based on the discoveries of the harmonic nature of the Tabla 
discussed in Chapter 5. A sample of the sound generated is Track 6 on the 
CD enclosed. The problem with this program is that it does not allow me 
to change the filter with time, as the delay line is lost once variable i does 
not equal 1 (see code for BayanSimulator3.m in Appendix E).  I now have 
achieved modal synthesis! 

Graph of Filter Used  
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Attempt 3:  

Now I created a program that had modal synthesis and that could change 
the filter over time. I could not use the MATLAB filter() function to do 
this, because the delay line would get lost if the coefficients were changed. 
So I had to model a filter similar to the way I did it for the Plucked String 
Model. Here is the filter equation I used: 

 
y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+a(5)*x(n-4)+a(6)*x(n-5) +  

            b(1)*y(n-1)+b(2)*y(n-2)+b(3)*y(n-3)+b(4)*y(n-4)+b(5)*y(n-5)+b(6)*y(n-6) 

 

   I had to remember to update the delay lines for each iteration. I 
changed the filter by using a for loop which at every iteration had the high 
frequency amplitude in array m get bigger and bigger, as the low 
frequencies get smaller and smaller. I also moved the highest frequency 
poles higher and higher at each iteration.  This program is called 
BayanSimulator.m, and can be found in Appendix E. This did not produce 
the desired sound I was hoping.  

 

Physical Model using STK Toolkit 
(This section is written by Georg Essl who was in charge of developing Tabla 
sound on STK Toolkit) 
 

The electronic Tabla controller signals can be used with any 
standard MIDI device to produce sound. However, the typical synthesis 
methods do not properly mimic the dynamics of the Tabla drums and 
hence the performance sound in relation to strokes is not well captured. 
Physical modeling is known to allow for direct physical interactions and 
hence the control values produced by the Tabla controller can be directly 
used as inputs rather than first finding a mapping that relates controller-
output to synthesis-relevant parameters. We use the “banded 
waveguides” which were originally introduced for one-dimensional 
structures like bar percussion instruments 26 but has recently been 
generalized to higher-dimensional structures 27. 
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Banded waveguides are a generalization of digital waveguide filters 
which accommodate complex material behavior and higher dimensions 
by modeling the traveling waves for each model frequency separately as is 
depicted in Figure 6.1. 

 

 

 

 

 

 

 

 

 

These collection of banded wavepaths which build the full system 
have, however, a geometric correspondence which allows to find the 
interactions points. Modes come about as standing waves, which is 
equivalent to the condition that traveling waves close onto themselves. 
Hence the task of finding geometric positions from modes corresponds to 
finding paths that close onto themselves and finding the matching mode 
for that path. This problem has been studied by Keller and Rubinow 28 
and the construction of finding these paths on a circular membrane is 
depicted in Figure 6.2. 

 

 

 

 

 

 

 

 

Tabla strokes correspond to feeding strike-velocities at the right 
positions into the delay-lines. A particularly interesting performance 
stroke is the Ga stroke performed on the Bayan. It includes a pitch bend 

Figure 6.1: Figure showing banded waveguide schematic. 

Figure 6.2: Figures showing construction of paths that 
close onto themselves 
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which is achieved by modifying the vibrating area due to pushing 
forward. This can be viewed as a moving boundary, which in case of 
banded waveguide corresponds to a shortening of the closed wavepaths, 
which in turn corresponds to a shortening of the delay-lines of the banded 
waveguide model. A comparison of a recorded and a simulated Ga stroke 
can be seen in Figure 6.3. 

Figure 11. Sonograms comparing recorded (left) and 
simulated (right) Ga strike. 
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Graphical Feedback 
by Philip Davidson 

 
The Visual System 
 

The visual system for the electronic Tabla is designed to augment 
the experience of the electronic Tabla by providing player and audience 
with a visual display that dynamically responds to the drums in parallel 
to the audio response.  Since the audio synthesis requires most of 
processing power of the audio machine, graphics processing occurs on a 
second machine, with controller messages routed to both systems.  We 
will describe the response of the system to Bayan strikes. 
 

Our concept for the graphics system began as a combination of 
geometric form with fluid motion.  To respond to the percussive energy of 
Tabla music, the visualization we developed is based on a particle system 
in which strikes made by the player appear as patterns composed of small 
shapes which are the basic visual elements of the display. As the player 
makes Ka and Ga strikes on the Bayan controller, particles are rearranged 
into lines, circles, cardioids, and other shapes depending on the type and 
quality of each strike. The velocity and pitch are mapped to the size, color, 
complexity and physical characteristics of the patterns we create.  
 

Once particles have been placed, their continuing motion is 
controlled by a vector field which imposes forces on each particle. After a 
strike places a form on the screen, the form will break apart and returns to 
the background motion.  The vector field can also be configured to 
respond to the movement and positions of particles.  The behavior of the 
field is governed by a distribution of ‘cells’ which determine the forces 
that will be exerted in their local area, based on the number and 
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distribution of particles in their domain.  Through this feedback of cell-
particle dynamics, we obtain behaviors which can mimic real-world 
systems.  By altering both the physical characteristics of particles and the 
specifics of cell-response behaviors, we can use the same system to 
produce a variety of effects (see Figure 7.1) .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to effects produced by the different strikes, it is also helpful to 
provide a response to the state of the drum itself.  Since the Bayan is 
responsive to palm pressure on the head of the drum, we visually impart 
a sense of increase or decrease in tension on the drumhead through 
corresponding compressive or decompressive forces to the particle 
systems. 29  

 
 
 
 
 
 

Figure 7.1: Different modes of visual feedback. 
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The Controls 
 

Table 7.1 describes the controls for the visual system. This graphic 
system can be used during performance as another instrument. The one 
who controls the visualization can react real-time to changes in mood, 
tempo and style as the ETabla is being performed.   

 
 

KEY ACTION 
Spacebar Full screen mode 
P Regular window 
W Display MIDI History 
E Show cell history (for Debugging) 
R Change particle type – triangle, 

cone, spark, blur, petal 
T Change field type – water, fire, 

snow, flower, off 
Y Change Ga shape 
U Change Ka shape 
A Trails (doesn’t clear screen) 
S Randomize colors 

 
 
 
   
 
 

        

Table 7.1: Showing controls of Visual System 
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Music Created with the 
ETabla 
Thesis Performance 

 

ne of the goals of this project was to make an instrument which 
can actually be used to create an audio and visual experience that 
expresses the feelings of the performer and enamors the audience. 

A performance was held on April 25th, 2002 in Taplin Auditorium, 
Princeton University, to premiere the Electronic Tabla to the world. 
Princeton undergraduate and graduate students joined faculty members 
and alumni in a spectacular performance mixing music from India, Africa 
and modern America, with electronic grooves and beats. 

  

The ETabla premiered in a traditional North Indian classical song 
playing a Tin Taal which is described in Chapter 2. The ETabla was also 
featured in a song with an artist playing the Roland GrooveBox, an 
instrument that uses a metronome to keep time. It was a major 
accomplishment that the ETabla could keep up with such a rhythmically 
precise machine. Another highlight of the concert was the “Dissonance 
Ritual”, where the ETabla created atmospheric sound-scapes, triggering 
long lasting electronic samples.    

 

  From this thesis performance, the ETabla successfully created a 
variety of styles of music, with a many types of musicians. Program notes 
are included in Appendix F. A CD of the concert is also included.    
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Other Projects using the 
ETabla 
New Instrument Designs 

 

 

ith the technology learned from creating the ETabla, I have 
developed an array of novel ideas for new controllers for 
musical expression. I need to learn how to use two new types of 

sensors: Piezo and Accelerometers. Piezo is used to measure changes in 
pressure, while accelerometers measure change in rotation. This chapter 
will outline the design schematics for these new instruments.     

 

New Instrument Design Schematics 
 

 
The Electronic Pentatonic Hand Drums (“Pentrix”): 
 

• This instrument has five 
drums which can play a 
pentatonic scale  

 
• It is played by a musician 

who will sit on the floor 
 

• The center circle will collect 
all the wires and send all outputs  
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• Each drum should be able to fit a parallax circuit board 
 

• Each drum should be designed to have an easily removable drum 
head so getting to the inside of the drum is possible 

 
• Technology: Square FSRS, piezo, (maybe long FSRs) 

 
 
 

 
The Electronic “BoomBaZ”: 

• This set of five drums will 
be played by a musician 
who is standing – thus 
they should all be around 
waist high 

 
• Each drum from bottom to 

top will get bigger and 
bigger 

 
• These Drums will be used 

to play the lower tones, 
acting like a bass  

 
• Music Note: These drums 

have the option of playing 
a pentatonic scale, or 
having all 12 tones 

 
• Each drum should be 

designed to have an easily 
removable drum head so 
getting to the inside of the 
drum is possible 

 
• Technology: Square FSRS, piezo, (maybe long FSRs) 
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The Electronic Dolak: 
 
• Two musicians who sit on the floor 

play this drum - one person will 
strike both sides of the drum (setting 
the rhythm), and the other will strike 
the black square on the top of the 
drum (setting the tempo, and 
warping the sounds).  

 
• One end of the drum is bigger than the other side of the drum, to 

represent a low tone and a high tone relatively 
 

• Each drum should be designed to have an easily removable drum 
head so getting to the inside of the drum is possible  

 
• Technology: Square FSRS, piezo, long FSRs 

 
 
The Electric “12toneKit” : 

• Has 2 foot pedals 
and a snare drum 
to achieve drum 
kit functionality 

 
 

• Has 12 tom toms 
in configuration of 
a piano with 
white drums and 
black drums, to 
signify the 
accidentals of the 
key of C major 

 
 

• Music Note: The configuration shown starts on F and ends on F 
(F Lydian). This makes it easy for a drummer to hit the tonic 
with their right hand, while the left hand and feet play a groove 
(beat). 
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• The foot pedals for bass drum and high hat are 

going to be on the floor (different than a real drum 
set where the foot triggers a spring action which 
strikes the bass drum with a pedal)  

 
• Each tom must be compatible with a existing drum 

hardware. However new ideas for structures to hold 
toms are encouraged. 

 
• Each drum should be designed to have an 

easily removable drum head so getting to the inside 
of the drum is possible  

 
• The Bass drum may act as a Hub for all the wires and 

inter-connects of all the drums. The MIDI outputs will also be 
located here 

 
• Technology: Square FSRS, piezo, (maybe long FSRs) 

 
 
 
 

The Electronic “DanceMachine”: 
 

• This a large circular pad which can sense 
position and velocity of the feet 

  
• The structure must have the ability to  be 

transported 
 

•  A durable material must be used as 
humans will jump up and down with their 
feet  

 
• Technology: Square FSRs and long FSRs 

 
 
 
 

FSR
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The Electronic Matrix: 
 

• This is a series 5 rows of 12 blocks, based on an 
instrument of Harry Partch 
 

• Blocks can be all the same size  
 

• Rack for blocks should organize rows with 
ascending height 
 

• Music Note: Can map 12 tones scales with 
octaves stacked on each other or map according 
to Guitar or Violin neck’s frets  
 

• Technology: Square FSRs, piezo (maybe long 
FSRs) 
 
 
The Electronic Bow: 
 
• This instrument will make sounds when 

comes in contact with the ground or 
another Electronic Bow 

 
• Two people can play this instrument 

together while dancing 
 
• Sticks must encase a circuit board 
 
• Sticks must also be able to have sensors 

next to outer edge but with protection 
from strikes 

 
• Technology: piezo, or Square FSRs, 

maybe Accelerometers for rotation , Wireless 
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Conclusion 
“Musical performance with entirely new types of computer instruments is 

now commonplace, as a result of the availability of inexpensive computing 
hardware, of new sensors for measuring physical parameters such as force and 
position, and of new software for real-time sound synthesis and manipulation. 
Musical interfaces that we construct are influenced greatly by the type of music 
we like, the music we set out to make, the instruments we already know how to 
play, and the artists we choose to work with, as well as the available sensors, 
computers, networks, etc. But the music we create and enable with our new 
instruments can be even more greatly influenced by our initial design decisions 
and techniques.”30 

 
I have outlined the initial design schematics as well as the process 

of creating a new musical controller. I feel the process has defined the end 
product, and how the new instrument can be used in a musical context.   

 
Our team successfully created a real-time device for Tabla 

performance. The ETabla controller augments the traditional interactions 
in various ways. The performer can now choose the sound production, 
independent of the physical interaction.  Automated teaching feedback 
has also become possible. We illustrate this ability by providing 
performance-dependent visual feedback. The ETabla was successfully 
used to entertain 200 people in an audio-visual extravaganza which 
demonstrated the power of computers. 

 
However, this project is not over. There still needs to be 

improvements in sound generation and processing speed of the ETabla 
controller. Other gizmos such as LEDs to denote pitch and switches to 
control drones would also be fun to add. As I begin to create new 
electronic instruments and learn more about the emerging technology, the 
ETabla will continue to evolve. This Senior Thesis project is just the 
beginning of the work of my life.  
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Experiments with Force 
Sensing Resistors 
Digitizing Force and Position 
Human Computer Interface Experiment 1 
  

Experiments on Measuring Position Using  an FSR  
 

Materials 
 
! A computer that runs Microsoft Windows 
! Programs available at: 

http://www.CS.Princeton.EDU/courses/cs436/Lab2/Lab2Code/ 
! A Long FSR 
! A Battery Powered Circuit Board with four-pin connector 
! A National Instruments input block 
! Two 9-volt Batteries 

 
Procedure 

1. Connect the four-pin connector of the long FSR to the circuit 
making sure to match the black dots.  

2. Connect the output wires of the circuit to the National 
Instruments input block by connecting the black wire (ground) 
to pin 67 and the red wire (signal) to pin 68  

3. Connect the two 9-volt  batteries to bias the circuit. 

4. Load the program called scope.prj in LabWindows CVI and run 
it.  

Appendix 

A 

http://www.cs.princeton.edu/courses/cs436/Lab2/Lab2Code/
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Results & Conclusions 
  

1. What happens as you press on the FSR in various locations? 
The higher we press on the FSR, the higher the voltage. The lower 
we press on the FSR, the lower the voltage 
 

2. Is the output a function of how hard you press?  
No. The FSR is a function of position. However, it can be rewired to 
measure both position and force.  

 
3. What is the voltage range of the sensor?  

The voltage goes from 0 volts to 9 volts 
 

4. How fast can you tap the sensor and see the effects?  
We set the sampling rate at 44100 Hz. We could tap the sensor 
approximately 2 times per second and see our results. Once we 
went to 3 times a second the output signal was unreadable.  
  

5. What is the effect of changing the sampling rate?  
When we lowered the sampling rate, the output response got much 
slower with less precision.  When the sampling rate was raised, the 
output response got much faster and more precise.   

 
6. What kind of signal conditioning circuit is this?  

Non-Inverting Amplifier 
 

7. What are the pros and cons of using this circuit?  
The advantage of this the non-inverting amplifier is that there is no 
conversion necessary to obtain a voltage. The disadvantage of this 
signal conditioning circuit is that we are especially sensitive to the 
direct output of the sensor so that if physical properties of that 
sensor change, or a different sensor is used, we will have to 
recalibrate the system.    
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Experiments on Measuring Force Using  an FSR 
 
Materials 
 
! A computer that runs Microsoft Windows 
! Matlab 
! Programs available at: 

http://www.CS.Princeton.EDU/courses/cs436/Lab2/Lab2Code/ 
! A Square FSR 
! A Battery Powered Circuit Board with four-pin connector 
! A National Instruments input block 
! Two 9-volt Batteries 

Procedure 
1. Remove the long FSR and connect the four-pin connector of the square 

FSR to the circuit making sure to match the black dots. Answer questions 
1 through 4 below.  

2. Stop running scope.prj.  
3. Launch MATLAB.  

4. Load the program called daqstart.prj in LabWindows CVI and run it.  
5. Set the number of samples to 1000.  

6. Set the sampling rate to 500.  

7. While slowly increasing the pressure on the sensor, start the data 
collection. Try to linearly increase pressure across the data collection 
window, but DO NOT look at the trace while doing it! Have one lab 
partner say "go" while another pushes the FSR.  

8. Click on the Matlab button. This sends the acquired samples to MATLAB. 
In Matlab, execute the plot(cvi_data) command to see the acquired data. 
Answer Questions 5 and 6 below.  

9. Go back to CVI and acquire 1000 more samples with the sensor at rest on 
the table.  

10. As before, plot the result in MATLAB. 

11. Repeat steps 11 and 12 while simply holding the sensor in your hand, but 
applying no pressure. 

12. Remove all of the batteries from the signal conditioning circuit.  

13. Disconnect the FSR circuit. 

http://www.cs.princeton.edu/courses/cs436/Lab2/Lab2Code/
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Results & Conclusions 
 

1. Is the output a function of how hard you press?  
The harder you press, the higher the voltage. The weaker you 
press the lower the voltage. 

   
2. What is the voltage range of the sensor? 

The voltage ranges from 0 volts to 9 volts. 
  

3. How fast can you tap the sensor and see the effects?  
We set the sampling rate at 44100 Hz. We could tap the sensor 
approximately 8 times per second and see our results.  

 
4. What is the effect of changing the sampling rate?  

When we lowered the sampling rate, the output response got 
much slower with less precision. When the sampling rate was 
raised, the output response got much faster and more precise.  

  
5. What is the relationship between pressure on the sensor and 

the voltage output of the circuit?  
The relationship of pressure to voltage is not linear. However, 
the greater the pressure the greater the voltage output.   

 
6. Write a function in MATLAB to linearize the relationship 

between pressure on the sensor and the plotted result.  
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Square FSR - voltage vs log (pressure) 
 

Since we are assuming that force increased linearly across the 
window, if we plot voltage vs force on a log scale, we obtain a 
linear relationship. 

 
Formula     Voltage  = b e (pressure ) , where b is a constant 

 
7. What do you see? How does this relate to the quantization of 

the analog to digital converter?  
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FSR left still on table 

 
The noise is masked by the FSR in experiments before. Now the 
pressure exerted by the computers in the room and other 
sources showed up in our graph in digital format. Our graph 
shows that there is a sharp peak at 90. It does not show the real 
analog curve from start to finish.  
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8. Now, what do you see? Why is this different?  
 

 
FSR held ‘still’ in palm of hand 

 
There are many more peaks on this graph. This is probably the 
sound of our heartbeat.  
 

9. Could choosing another signal conditioning circuit eliminate 
this?  
Yes, use a Single Pole Low Pass Filter.  
 

10. The FSRs plug into a small battery powered circuit board. 
What is the purpose of that board?  
To achieve signal conditioning circuitry. 

 
11. The large square FSR has a resistor attached to it. Why is this 

necessary?  
The resistor on the large square FSR acts as a reference voltage. 
The long FSR has two resistive films interweaved so it does not 
need the extra resistor.   
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PBASIC Code  
ETabla Basic Stamp Code 

  

Bayan2HS.bs2  
 
Rf var word 
Rpos var word 
strikeDamp var bit 
slapHold var bit 
temp var byte 
velocity var byte 
CS con 13 
CLK con 14 
DIO_n con 15 
config var nib 
startB  var config.bit0 
sglDif  var config.bit1 
oddSign var config.bit2 
msfb    var config.bit3 
AD0 var word 
AD1 var word 
 
BSA con 12 '  High side of FSR Fixed Resistor 
BSB con 10  '  Capacitor Pin 
BSC con 11  '  Force Wiper of FSR, Other side of Capacitor 
 
BSS con 7 
SRf  var word ' Slapper Force Variable 
 
loop: 
 
'*** This is for the Slapper   
    high BSS 
    rctime BSS, 1, SRf 

Appendix 

B 
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'   debug ? SRf 
    if SRf < 150 then doSlap  
    slapHold = 0 
 
'***  This is the linear strip (bender) 
'*** Read Force Resistance 
    low BSA 
    high BSB 
    high BSC 
    rctime BSC, 1, Rf 
 
'*** Read A/D Channels 
    HIGH BSA 
    INPUT BSB 
    INPUT BSC 
    gosub ReadADs 
 
'*** STRIKER variable AD1: The greater the pressure the smaller AD1 
'*** AD1 Ranges from 20 to 2100, We will take ones smaller than 1770 
if AD1 > 1770 then skipStrike 
    '*** Velocity of Striker: 127 loud, 0 soft 
     velocity = 127 - (AD1/16) 
    'debug ? velocity 
    'debug ? strikeDamp 
    '*** When hold down striker, strikeDamp = 1, 0 when 1 hit  
    if strikeDamp = 1 then doDamp 
        '*** Send Controller  (176) 
        'serout 8, 12, 1, [176, 16, 127]  
        '***  Note on (144) -- good 
        serout 8, 12, 1, [144, 67, velocity] 
     ' Note Off (128) 
        serout 8, 12, 1, [128 ,67, 64] 
    
        'debug "serout 8, 12, 1, [144, 30, "  
   'debug ? velocity 
        '*** Set strikeDamp = 1 so if holding, wont come back into loop until let go 
        strikeDamp = 1 
        goto strikeOut 
    doDamp: 
   AD1 = AD1 / 16  
        'serout 8, 12, 1, [176, 1, AD1/2 + 64] 
        'debug "serout 8, 12, 1, [176, 1, " 
        'debug ? (AD1/2 + 64) 
   goto strikeOut 
skipStrike: 
    '*** strikeDamp = 0 when no Strike, or when let go from hold 
    strikeDamp = 0 
 
'*** BENDER: Rf is force, AD0 is position 
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strikeOut: 
 
'*** If enough force Rf on bender, then do something 
   if Rf > 271 then skipPosition 
   '*** AD0 varies from 3250(bottom) to 0 (top) 
'   debug DEC AD0, " ", DEC AD1, cr 
 
   AD0 = 127 - (AD0/31) 
            
        Rf = 127 - (Rf/3) 
   'debug ? Rf 
   '*** Higher AD0 and Rf the higher the pitch 
   'debug "Force = ", DEC Rf, "  Position = ", DEC AD0, cr 
   if (Rf > AD0) then DomForce 
    temp = ((3*AD0)/4) + (Rf/4) 
         'debug ? temp 
         '*** Pitch Change (224) 
         'serout 8, 12, 1, [233, temp, 30] 
  'Handsonic needs control change (176) for Bender- - good 
  serout 8, 12, 1, [176, 16, temp] 
            goto skipPosition 
         DomForce: 
  temp = ((3*Rf)/4) + (AD0/4) 
         'debug ? temp 
         '*** Pitch Change (224) 
         'serout 8, 12, 1, [233, temp, 30] 
  'Handsonic needs control change (176) for Bender- - good 
  serout 8, 12, 1, [176, 16, temp] 
            goto skipPosition 
     
doSlap: 
 if slapHold = 1 then skipPosition 
   SRf = 127 - (SRf/2) 
   'debug ? SRf 
        '*** Send Controller  (176) 
        'serout 8, 12, 1, [185, 1, 1]  
        '***  Note on (144) Ka (71) -good  
        serout 8, 12, 1, [144, 71, SRf] 
   ' Note Off (128) 
        serout 8, 12, 1, [128 ,71, 64] 
   'debug "serout 8, 12, 1, [176, 1, 1]", cr 
        'debug "serout 8, 12, 1, [144, 44, "  
   'debug ? SRf 
        '*** Set slapHold = 1 so if holding, wont come back into loop until let go 
        slapHold = 1 
 
skipPosition: 
  
goto loop 
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ReadADs: 
    high DIO_n 
    oddsign = 0 
    config = config | %1011 
    low CS 
    shiftout DIO_n, CLK, lsbfirst, [config\4] 
    shiftin DIO_n,CLK,msbpost,[AD0\12] 
    high CS 
    oddsign = 1 
    config = config | %1011 
    low CS 
    shiftout DIO_n, CLK, lsbfirst, [config\4] 
    shiftin DIO_n,CLK,msbpost,[AD1\12] 
    high CS 
return 

 
 

Dahina2HS.bs2 
    
RfA var word '  Force of Ring Linear FSR 
RfB var word '  Force of Index Linear FSR 
RposA var word 
RposB var word 
TitHold var bit 
RingDamp var bit 
DhiraHold var bit 
IndexHold var bit 
temp var byte 
velocity var byte 
CSA con 13 
CLKA con 14 
DIO_nA con 15 
CSB con 5 
CLKB con 6 
DIO_nB con 7 
config var nib 
startB  var config.bit0 
sglDif  var config.bit1 
oddSign var config.bit2 
msfb    var config.bit3 
ADA0 var word ' Position of Ring Linear FSR 
ADA1 var word ' Tira force FSR  
ADB0 var word ' Position of Index Linear FSR 
ADB1 var word ' Tit force FSR 
 
BSAA con 12  '  High side of FSR Fixed Resistor A 
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BSAB con 10  ' Capacitor Pin A 
BSAC con 11  ' Force Wiper of FSRA, Other side of Capacitor 
 
BSBA con 4 '  High side of FSR Fixed Resistor B 
BSBB con 2  '  Capacitor Pin B 
BSBC con 3  '  Force Wiper of FSRA, Other side of Capacitor 
 
 
loop: 
 
'***  These are the linear FSRs 
'*** Read Force Resistance 
     low BSAA 
     high BSAB 
     high BSAC 
     rctime BSAC, 1, RfA 
     low BSBA 
     high BSBB 
     high BSBC 
     rctime BSBC, 1, RfB 
'    debug DEC RfA, " ", DEC RfB, cr 
 
'*** Read A/D Channels 
     HIGH BSAA 
     INPUT BSAB 
     INPUT BSAC 
     HIGH BSBA 
     INPUT BSBB 
     INPUT BSBC 
     gosub ReadADs 
 
     'debug DEC ADA0, " ", DEC ADA1, " ", DEC ADB0, " ", DEC ADB1, cr 
'     debug DEC ADB0, " ", DEC ADB1, cr 
'      debug ? RfA 
 
 '*** DHIRA: If dhira then jump 
      if ADA1 < 1000 then doDhira 
      DhiraHold = 0 
  
 '*** TIT: If tit then jump 
 if ADB1 < 1000 then doTit 
      TitHold = 0 
 
'*** RING LINEAR FSR       
'*** If enough force RfA on Ring FSR, then do something 
  if RfA > 240 then skipRing 
  ADA0 = 127 - (ADA0/31)       
       RfA = 127 - (RfA/3) 
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  'debug DEC ADA0, " ", DEC RfA, cr 
  ' '*** Higher ADA0 the more damped the sound 
  if (RfA > 100) then DoRingStrike 
  RingDamp = 1  
            goto skiptoIndex 
       DoRingStrike: 
   if (RingDamp = 1) then skiptoIndex 
           '***  Note on (144) 
           serout 8, 12, 1, [144, 70, RfA] 
      ' Note Off (128) 
           serout 8, 12, 1, [128 ,70, 64] 
    'debug "Ti  ", DEC ADA0," ", DEC RfA, cr 
    RingDamp = 1 
    goto SkiptoLoop 
 
skipRing: 
 RingDamp = 0 
 
skiptoIndex: 
 
'*** INDEX LINEAR FSR       
'*** If enough force RfB on Index FSR, then do something 
  if RfB > 240 then skipIndex 
 if (IndexHold = 1) then SkiptoLoop  
  IndexHold = 1 
  ADB0 = (ADB0/31)       
        RfB = 127 - (RfB/3) 
   'debug DEC ADB0, " ", DEC RfB, cr 
   ' '*** Higher ADA0 the more damped the sound 
       if (RingDamp = 0) then StrikeTu 
   if (ADB0 < 25) then StrikeNa 
    '*** Ta Strike  
    'debug "Ta  ", DEC ADB0, " ", DEC RfB, cr  
           '***  Note on (144) 
           serout 8, 12, 1, [144, 72, RfB] 
      ' Note Off (128) 
         serout 8, 12, 1, [128 ,72, 64] 
              goto SkiptoLoop 
   StrikeNa: 
    'debug "Na  ", DEC ADB0, " ", DEC RfB, cr 
    '*** Send Controller  (176) 
           serout 8, 12, 1, [176, 17, 76]  
           '***  Note on (144) 
           serout 8, 12, 1, [144, 74, RfB] 
      ' Note Off (128) 
           serout 8, 12, 1, [128 ,74, 64] 
              goto SkiptoLoop 
 
  StrikeTu: 
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   'debug "Tu  ", DEC ADB0, " ", DEC RfB, cr  
          '***  Note on (144) 
          serout 8, 12, 1, [144, 73, RfB] 
     ' Note Off (128) 
          serout 8, 12, 1, [128 ,73, 64] 
             goto SkiptoLoop 
 
skipIndex: 
    IndexHold = 0 
 goto skiptoLoop 
 
doTit: 
 if TitHold = 1 then skiptoLoop 
   'debug ? ADA1 
   ADB1 = 127 - (ADB1/10) 
   'debug ? ADB1 
        '*** Send Controller  (176) 
        serout 8, 12, 1, [176, 17, 96]  
        '***  Note on (144) 
        serout 8, 12, 1, [144, 74, ADB1] 
      ' Note Off (128) 
        serout 8, 12, 1, [128 ,74, 64] 
   'debug "Tit  ", DEC ADB1,  cr 
        '*** Set TitHold = 1 so if holding, wont come back into loop until let go 
        TitHold = 1 
   goto skiptoLoop 
 
doDhira: 
 if DhiraHold = 1 then skiptoLoop 
   'debug ? ADA1 
   ADA1 = 127 - (ADA1/10) 
   'debug ? ADA1 
        '***  Note on (144) 
        serout 8, 12, 1, [144, 64, ADA1] 
        ' Note Off (128) 
        serout 8, 12, 1, [128 ,64, 64] 
   'debug "Tira  ", DEC ADA1,  cr 
        '*** Set DhiraHold = 1 so if holding, wont come back into loop until let go 
        DhiraHold = 1 
 
skiptoLoop: 
 
goto loop 
     
ReadADs: 
    '*** Read AD A 
    high DIO_nA 
    oddsign = 0 
    config = config | %1011 
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    low CSA 
    shiftout DIO_nA, CLKA, lsbfirst, [config\4] 
    shiftin DIO_nA,CLKA,msbpost,[ADA0\12] 
    high CSA 
    oddsign = 1 
    config = config | %1011 
    low CSA 
    shiftout DIO_nA, CLKA, lsbfirst, [config\4] 
    shiftin DIO_nA,CLKA,msbpost,[ADA1\12] 
    high CSA 
 
    '*** Read AD B 
    high DIO_nB 
    oddsign = 0 
    config = config | %1011 
    low CSB 
    shiftout DIO_nB, CLKB, lsbfirst, [config\4] 
    shiftin DIO_nB,CLKB,msbpost,[ADB0\12] 
    high CSB 
    oddsign = 1 
    config = config | %1011 
    low CSB 
    shiftout DIO_nB, CLKB, lsbfirst, [config\4] 
    shiftin DIO_nB,CLKB,msbpost,[ADB1\12] 
    high CSB 
 
return 
 

 

Bayan2HS.bsx 
    
'{$STAMP BS2sx} 
Rf var word 
Rpos var word 
strikeDamp var bit 
slapHold var bit 
temp var byte 
velocity var byte 
CS con 13 
CLK con 14 
DIO_n con 15 
config var nib 
startB  var config.bit0 
sglDif  var config.bit1 
oddSign var config.bit2 
msfb    var config.bit3 
AD0 var word 
AD1 var word 
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BSA con 12 '  High side of FSR Fixed Resistor 
BSB con 10  '  Capacitor Pin 
BSC con 11  '  Force Wiper of FSR, Other side of Capacitor 
 
BSS con 7 
SRf  var word ' Slapper Force Variable 
 
loop: 
 
'*** This is for the Slapper   
    high BSS 
    rctime BSS, 1, SRf 
'   debug ? SRf 
    if SRf < 500 then doSlap  
    slapHold = 0 
 
'***  This is the linear strip (bender) 
'*** Read Force Resistance 
    low BSA 
    high BSB 
    high BSC 
    rctime BSC, 1, Rf 
 
'*** Read A/D Channels 
    HIGH BSA 
    INPUT BSB 
    INPUT BSC 
    gosub ReadADs 
 
'*** STRIKER variable AD1: The greater the pressure the smaller AD1 
'*** AD1 Ranges from 20 to 2100, We will take ones smaller than 1770 
 
if AD1 > 1770 then skipStrike 
    'debug ? strikeDamp 
    '*** When hold down striker, strikeDamp = 1, 0 when 1 hit  
    if strikeDamp = 1 then doDamp 
   '*** Velocity of Striker: 127 loud, 0 soft 
        velocity = 127 - (AD1>>4) '*** Optimization: used to be divide by 16 
        '***  Note on (144) -- good 
        serout 8, 60, 1, [144, 67, velocity] 
     ' Note Off (128) 
        serout 8, 60, 1, [128 ,67, 64]    
   'debug ? velocity 
        '*** Set strikeDamp = 1 so if holding, wont come back into loop until let go 
        strikeDamp = 1 
        goto strikeOut 
    doDamp: 
   AD1 = AD1 / 16  
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   goto strikeOut 
skipStrike: 
    '*** strikeDamp = 0 when no Strike, or when let go from hold 
    strikeDamp = 0 
 
'*** BENDER: Rf is force, AD0 is position 
strikeOut: 
'*** If enough force Rf on bender, then do something 
    if Rf > 230 then skipPosition 
   '*** AD0 varies from 3250(bottom) to 0 (top) 
'   debug DEC AD0, " ", DEC AD1, cr 
 
   AD0 = 127 - (AD0>>5) '*** Optimization: used to be Divide by 32  
            
        Rf = 127 - (Rf/3)  
   'debug ? Rf 
   '*** Higher AD0 and Rf the higher the pitch 
   'debug "Force = ", DEC Rf, "  Position = ", DEC AD0, cr 
   if (Rf > AD0) then DomForce 
    temp = ((3*AD0)>>2) + (Rf>>2) '*** Optimization: used to be Divide by 4 
         'debug ? temp 
   '***  Note on (144) -- good 
         'serout 8, 60, 1, [144, 60, velocity] 
  'Handsonic needs polypressure (160) for Bender- - good 
  serout 8, 60, 1, [160, 60, (127-temp)] 
            goto skipPosition 
        DomForce: 
  temp = ((3*Rf)>>2) + (AD0>>2) '*** Optimization: used to be Divide by 4 
         'debug ? temp 
       '***  Note on (144) -- good 
            'serout 8, 60, 1, [144, 60, velocity] 
  'Handsonic needs polypressure (160) for Bender- - good 
  serout 8, 60, 1, [160, 60, (127-temp)] 
            goto skipPosition 
     
doSlap: 
 if slapHold = 1 then skipPosition 
   SRf = 127 - (SRf>>2) '*** Optimization: used to be Divide by 4 
   'debug ? SRf 
        '***  Note on (144) Ka (71) -good  
        serout 8, 60, 1, [144, 71, SRf] 
   ' Note Off (128) 
        serout 8, 60, 1, [128 ,71, 64] 
        '*** Set slapHold = 1 so if holding, wont come back into loop until let go 
        slapHold = 1 
 
skipPosition: 
  
goto loop 
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ReadADs: 
    high DIO_n 
    oddsign = 0 
    config = config | %1011 
    low CS 
    shiftout DIO_n, CLK, lsbfirst, [config\4] 
    shiftin DIO_n,CLK,msbpost,[AD0\12] 
    high CS 
    oddsign = 1 
    config = config | %1011 
    low CS 
    shiftout DIO_n, CLK, lsbfirst, [config\4] 
    shiftin DIO_n,CLK,msbpost,[AD1\12] 
    high CS 
return 
 
 
Dahina2HS.bsx    
 
'{$STAMP BS2sx} 
RfA var word '  Force of Ring Linear FSR 
RfB var word '  Force of Index Linear FSR 
RposA var word 
RposB var word 
TitHold var bit 
RingDamp var bit 
DhiraHold var bit 
IndexHold var bit 
temp var byte 
velocity var byte 
CSA con 13 
CLKA con 14 
DIO_nA con 15 
CSB con 5 
CLKB con 6 
DIO_nB con 7 
config var nib 
startB  var config.bit0 
sglDif  var config.bit1 
oddSign var config.bit2 
msfb    var config.bit3 
ADA0 var word ' Position of Ring Linear FSR 
ADA1 var word ' Tira force FSR  
ADB0 var word ' Position of Index Linear FSR 
ADB1 var word ' Tit force FSR 
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BSAA con 12  '  High side of FSR Fixed Resistor A 
BSAB con 10  ' Capacitor Pin A 
BSAC con 11  ' Force Wiper of FSRA, Other side of Capacitor 
 
BSBA con 4 '  High side of FSR Fixed Resistor B 
BSBB con 2  '  Capacitor Pin B 
BSBC con 3  '  Force Wiper of FSRA, Other side of Capacitor 
 
loop: 
 
'***  These are the linear FSRs 
'*** Read Force Resistance 
     low BSAA 
     high BSAB 
     high BSAC 
     rctime BSAC, 1, RfA 
     low BSBA 
     high BSBB 
     high BSBC 
     rctime BSBC, 1, RfB 
'    debug DEC RfA, " ", DEC RfB, cr 
 
'*** Read A/D Channels 
     HIGH BSAA 
     INPUT BSAB 
     INPUT BSAC 
     HIGH BSBA 
     INPUT BSBB 
     INPUT BSBC 
     gosub ReadADs 
 
     'debug DEC ADA0, " ", DEC ADA1, " ", DEC ADB0, " ", DEC ADB1, cr 
'     debug DEC ADB0, " ", DEC ADB1, cr 
'      debug ? RfA 
 
 '*** DHIRA: If dhira then jump 
      if ADA1 < 1000 then doDhira 
      DhiraHold = 0 
  
 '*** TIT: If tit then jump 
 if ADB1 < 1000 then doTit 
      TitHold = 0 
 
 
'*** RING LINEAR FSR       
'*** If enough force RfA on Ring FSR, then do something 
  if RfA > 500 then skipRing      
       RfA = 127 - (RfA>>2) '*** Optimization used to be divide by 4 
  'debug ? RfA  
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  'debug DEC ADA0, " ", DEC RfA, cr 
  ' '*** Higher ADA0 the more damped the sound 
  if (RfA > 60) then DoRingStrike 
  RingDamp = 1  
            goto skiptoIndex 
       DoRingStrike: 
   if (RingDamp = 1) then skiptoIndex 
           '***  Note on (144) 
           serout 8, 60, 1, [144, 70, RfA] 
      ' Note Off (128) 
           serout 8, 60, 1, [128 ,70, 64] 
    debug "Ti  ", DEC RfA, cr 
    RingDamp = 1 
    goto SkiptoLoop 
 
skipRing: 
 RingDamp = 0 
 
skiptoIndex: 
 
'*** INDEX LINEAR FSR       
'*** If enough force RfB on Index FSR, then do something 
 
  if RfB > 500 then skipIndex 
 if (IndexHold = 1) then SkiptoLoop  
  IndexHold = 1 
  ADB0 = (ADB0>>5) '*** Optimization: was divided by 32       
        RfB = 127 - (RfB>>2) '*** Optimization: was divide by 4  
  'debug ? ADB0 
   'debug DEC ADB0, " ", DEC RfB, cr 
   ' '*** Higher ADA0 the more damped the sound 
       if (ADB0 > 25) then StrikeTu 
   debug "Na  ", DEC ADB0, " ", DEC RfB, cr 
   '*** Send Controller  (176) 
          serout 8, 60, 1, [176, 17, 96]  
          '***  Note on (144) 
          serout 8, 60, 1, [144, 74, RfB] 
     ' Note Off (128) 
     serout 8, 60, 1, [128 ,74, 64] 
             goto SkiptoLoop 
  StrikeTu: 
   debug "Tu  ", DEC ADB0, " ", DEC RfB, cr  
          '***  Note on (144) 
          serout 8, 60, 1, [144, 73, RfB] 
     ' Note Off (128) 
          serout 8, 60, 1, [128 ,73, 64] 
             goto SkiptoLoop 
 
skipIndex: 
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    IndexHold = 0 
 goto skiptoLoop 
 
doTit: 
 if TitHold = 1 then skiptoLoop 
   'debug ? ADA1 
   ADB1 = 127 - (ADB1/10) 
   'debug ? ADB1 
        '*** Send Controller  (176) 
        serout 8, 60, 1, [176, 17, 96]  
        '***  Note on (144) 
        serout 8, 60, 1, [144, 74, ADB1] 
      ' Note Off (128) 
        serout 8, 60, 1, [128 ,74, 64] 
   debug "Tit  ", DEC ADB1,  cr 
        '*** Set TitHold = 1 so if holding, wont come back into loop until let go 
        TitHold = 1 
   goto skiptoLoop 
 
doDhira: 
 if DhiraHold = 1 then skiptoLoop 
   'debug ? ADA1 
   ADA1 = 127 - (ADA1/10) 
   'debug ? ADA1 
        '***  Note on (144) 
        serout 8, 60, 1, [144, 64, ADA1] 
        ' Note Off (128) 
        serout 8, 60, 1, [128 ,64, 64] 
   debug "Tira  ", DEC ADA1,  cr 
        '*** Set DhiraHold = 1 so if holding, wont come back into loop until let go 
        DhiraHold = 1 
 
skiptoLoop: 
 
goto loop 
     
 
ReadADs: 
    '*** Read AD A 
    high DIO_nA 
    oddsign = 0 
    config = config | %1011 
    low CSA 
    shiftout DIO_nA, CLKA, lsbfirst, [config\4] 
    shiftin DIO_nA,CLKA,msbpost,[ADA0\12] 
    high CSA 
    oddsign = 1 
    config = config | %1011 
    low CSA 
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    shiftout DIO_nA, CLKA, lsbfirst, [config\4] 
    shiftin DIO_nA,CLKA,msbpost,[ADA1\12] 
    high CSA 
 
    '*** Read AD B 
    high DIO_nB 
    oddsign = 0 
    config = config | %1011 
    low CSB 
    shiftout DIO_nB, CLKB, lsbfirst, [config\4] 
    shiftin DIO_nB,CLKB,msbpost,[ADB0\12] 
    high CSB 
    oddsign = 1 
    config = config | %1011 
    low CSB 
    shiftout DIO_nB, CLKB, lsbfirst, [config\4] 
    shiftin DIO_nB,CLKB,msbpost,[ADB1\12] 
    high CSB 
return 

 
 

Bayan2STK.bsx 
    
'{$STAMP BS2sx} 
Rf var word 
Rpos var word 
strikeDamp var bit 
slapHold var bit 
temp var byte 
velocity var byte 
CS con 13 
CLK con 14 
DIO_n con 15 
config var nib 
startB  var config.bit0 
sglDif  var config.bit1 
oddSign var config.bit2 
msfb    var config.bit3 
AD0 var word 
AD1 var word 
 
BSA con 12 '  High side of FSR Fixed Resistor 
BSB con 10  '  Capacitor Pin 
BSC con 11  '  Force Wiper of FSR, Other side of Capacitor 
 
BSS con 7 
SRf  var word ' Slapper Force Variable 
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loop: 
 
'*** This is for the Slapper   
    high BSS 
    rctime BSS, 1, SRf 
'   debug ? SRf 
    if SRf < 500 then doSlap  
    slapHold = 0 
 
'***  This is the linear strip (bender) 
'*** Read Force Resistance 
    low BSA 
    high BSB 
    high BSC 
    rctime BSC, 1, Rf 
 
'*** Read A/D Channels 
    HIGH BSA 
    INPUT BSB 
    INPUT BSC 
    gosub ReadADs 
 
'*** STRIKER variable AD1: The greater the pressure the smaller AD1 
'*** AD1 Ranges from 20 to 2100, We will take ones smaller than 1770 
 
if AD1 > 1770 then skipStrike 
    'debug ? strikeDamp 
    '*** When hold down striker, strikeDamp = 1, 0 when 1 hit  
    if strikeDamp = 1 then doDamp 
   '*** Velocity of Striker: 127 loud, 0 soft 
        velocity = 127 - (AD1>>4) '*** Optimization: used to be divide by 16 
        '***  Note on (144) -- good 
        serout 8, 60, 0, [144, 40, velocity] 
      
   'debug ? velocity 
        '*** Set strikeDamp = 1 so if holding, wont come back into loop until let go 
        strikeDamp = 1 
        goto strikeOut 
    doDamp: 
   AD1 = AD1 / 16  
   goto strikeOut 
skipStrike: 
    '*** strikeDamp = 0 when no Strike, or when let go from hold 
    strikeDamp = 0 
 
'*** BENDER: Rf is force, AD0 is position 
strikeOut: 
'*** If enough force Rf on bender, then do something 
    if Rf > 230 then skipPosition 



 

92929292 

   '*** AD0 varies from 3250(bottom) to 0 (top) 
'   debug DEC AD0, " ", DEC AD1, cr 
 
   AD0 = 127 - (AD0>>5) '*** Optimization: used to be Divide by 32  
            
        Rf = 127 - (Rf/3)  
   'debug ? Rf 
   '*** Higher AD0 and Rf the higher the pitch 
   'debug "Force = ", DEC Rf, "  Position = ", DEC AD0, cr 
   if (Rf > AD0) then DomForce 
    temp = ((3*AD0)>>2) + (Rf>>2) '*** Optimization: used to be Divide by 4 
         'debug ? temp 
         '*** Pitch Change (224) 
         'serout 8, 60, 1, [224, temp, 30] 
  'Handsonic needs polypressure (160) for Bender- - good 
  serout 8, 60, 0, [160, 40, (127-temp)] 
            goto skipPosition 
        DomForce: 
  temp = ((3*Rf)>>2) + (AD0>>2) '*** Optimization: used to be Divide by 4 
         'debug ? temp 
         '*** Pitch Change (224) 
         'serout 8, 12, 1, [224, temp, 30] 
  'Handsonic needs polypressure (160) for Bender- - good 
  serout 8, 60, 0, [160, 40, (127-temp)] 
            goto skipPosition 
     
doSlap: 
 if slapHold = 1 then skipPosition 
   SRf = 127 - (SRf>>2) '*** Optimization: used to be Divide by 4 
   'debug ? SRf 
        '***  Note on (144) Ka    
        serout 8, 60, 0, [144, 40, SRf] 
        '***  Modulation (11)   
        serout 8, 60, 0, [11, 127] 
 
        '*** Set slapHold = 1 so if holding, wont come back into loop until let go 
        slapHold = 1 
 
skipPosition: 
  
goto loop 
     
 
ReadADs: 
    high DIO_n 
    oddsign = 0 
    config = config | %1011 
    low CS 
    shiftout DIO_n, CLK, lsbfirst, [config\4] 
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    shiftin DIO_n,CLK,msbpost,[AD0\12] 
    high CS 
    oddsign = 1 
    config = config | %1011 
    low CS 
    shiftout DIO_n, CLK, lsbfirst, [config\4] 
    shiftin DIO_n,CLK,msbpost,[AD1\12] 
    high CS 
return 

 
 

Dahina2STK.bsx 
    
'{$STAMP BS2sx} 
RfA var word '  Force of Ring Linear FSR 
RfB var word '  Force of Index Linear FSR 
RposA var word 
RposB var word 
TitHold var bit 
RingDamp var bit 
DhiraHold var bit 
IndexHold var bit 
temp var byte 
velocity var byte 
CSA con 13 
CLKA con 14 
DIO_nA con 15 
CSB con 5 
CLKB con 6 
DIO_nB con 7 
config var nib 
startB  var config.bit0 
sglDif  var config.bit1 
oddSign var config.bit2 
msfb    var config.bit3 
ADA0 var word ' Position of Ring Linear FSR 
ADA1 var word ' Tira force FSR  
ADB0 var word ' Position of Index Linear FSR 
ADB1 var word ' Tit force FSR 
 
BSAA con 12  '  High side of FSR Fixed Resistor A 
BSAB con 10  ' Capacitor Pin A 
BSAC con 11  ' Force Wiper of FSRA, Other side of Capacitor 
 
BSBA con 4 '  High side of FSR Fixed Resistor B 
BSBB con 2  '  Capacitor Pin B 
BSBC con 3  '  Force Wiper of FSRA, Other side of Capacitor 
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loop: 
 
'***  These are the linear FSRs 
'*** Read Force Resistance 
     low BSAA 
     high BSAB 
     high BSAC 
     rctime BSAC, 1, RfA 
     low BSBA 
     high BSBB 
     high BSBC 
     rctime BSBC, 1, RfB 
'    debug DEC RfA, " ", DEC RfB, cr 
 
'*** Read A/D Channels 
     HIGH BSAA 
     INPUT BSAB 
     INPUT BSAC 
     HIGH BSBA 
     INPUT BSBB 
     INPUT BSBC 
     gosub ReadADs 
 
     'debug DEC ADA0, " ", DEC ADA1, " ", DEC ADB0, " ", DEC ADB1, cr 
'     debug DEC ADB0, " ", DEC ADB1, cr 
'      debug ? RfA 
 
 '*** DHIRA: If dhira then jump 
      if ADA1 < 1000 then doDhira 
      DhiraHold = 0 
  
 '*** TIT: If tit then jump 
 if ADB1 < 1000 then doTit 
      TitHold = 0 
 
 
'*** RING LINEAR FSR       
'*** If enough force RfA on Ring FSR, then do something 
  if RfA > 500 then skipRing      
       RfA = 127 - (RfA>>2) '*** Optimization used to be divide by 4 
  'debug ? RfA  
  'debug DEC ADA0, " ", DEC RfA, cr 
  ' '*** Higher ADA0 the more damped the sound 
  if (RfA > 60) then DoRingStrike 
  RingDamp = 1  
            goto skiptoIndex 
       DoRingStrike: 
   if (RingDamp = 1) then skiptoIndex 
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    '*** Send Controller  (176) 
           serout 8, 60, 1, [176, 17, 96]  
           '***  ModWheel (1) 
           serout 8, 60, 1, [1, (127-ADA0)] 
    '***  Note on (144) 
           serout 8, 60, 1, [144, 70, RfA] 
    'debug "Ti  ", DEC RfA, cr 
    RingDamp = 1 
    goto SkiptoLoop 
 
skipRing: 
 RingDamp = 0 
 
skiptoIndex: 
 
'*** INDEX LINEAR FSR       
'*** If enough force RfB on Index FSR, then do something 
 
  if RfB > 500 then skipIndex 
 if (IndexHold = 1) then SkiptoLoop  
  IndexHold = 1 
  ADB0 = (ADB0>>5) '*** Optimization: was divided by 32       
        RfB = 127 - (RfB>>2) '*** Optimization: was divide by 4  
  'debug ? ADB0 
   'debug DEC ADB0, " ", DEC RfB, cr 
   ' '*** Higher ADA0 the more damped the sound 
  '*** Send Controller  (176) 
         serout 8, 60, 1, [176, 17, 96]  
         '***  ModWheel (1) 
         serout 8, 60, 1, [1, (127-ADB0)] 
debug ? 127 -ADB0 
  '***  Note on (144) 
         serout 8, 60, 1, [144, 70, RfB] 
            goto SkiptoLoop 
 
skipIndex: 
    IndexHold = 0 
 goto skiptoLoop 
 
doTit: 
 if TitHold = 1 then skiptoLoop 
   'debug ? ADA1 
   ADB1 = 127 - (ADB1/10) 
   'debug ? ADB1 
        '*** Send Controller  (176) 
        serout 8, 60, 1, [176, 17, 96]  
        '***  Note on (144) 
        serout 8, 60, 1, [144, 74, ADB1] 
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      ' Note Off (128) 
        serout 8, 60, 1, [128 ,74, 64] 
   debug "Tit  ", DEC ADB1,  cr 
        '*** Set TitHold = 1 so if holding, wont come back into loop until let go 
        TitHold = 1 
   goto skiptoLoop 
 
doDhira: 
 if DhiraHold = 1 then skiptoLoop 
   'debug ? ADA1 
   ADA1 = 127 - (ADA1/10) 
   'debug ? ADA1 
        '***  Note on (144) 
        serout 8, 60, 1, [144, 64, ADA1] 
        ' Note Off (128) 
        serout 8, 60, 1, [128 ,64, 64] 
   debug "Tira  ", DEC ADA1,  cr 
        '*** Set DhiraHold = 1 so if holding, wont come back into loop until let go 
        DhiraHold = 1 
 
skiptoLoop: 
 
goto loop 
     
 
ReadADs: 
    '*** Read AD A 
    high DIO_nA 
    oddsign = 0 
    config = config | %1011 
    low CSA 
    shiftout DIO_nA, CLKA, lsbfirst, [config\4] 
    shiftin DIO_nA,CLKA,msbpost,[ADA0\12] 
    high CSA 
    oddsign = 1 
    config = config | %1011 
    low CSA 
    shiftout DIO_nA, CLKA, lsbfirst, [config\4] 
    shiftin DIO_nA,CLKA,msbpost,[ADA1\12] 
    high CSA 
 
    '*** Read AD B 
    high DIO_nB 
    oddsign = 0 
    config = config | %1011 
    low CSB 
    shiftout DIO_nB, CLKB, lsbfirst, [config\4] 
    shiftin DIO_nB,CLKB,msbpost,[ADB0\12] 
    high CSB 
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    oddsign = 1 
    config = config | %1011 
    low CSB 
    shiftout DIO_nB, CLKB, lsbfirst, [config\4] 
    shiftin DIO_nB,CLKB,msbpost,[ADB1\12] 
    high CSB 
return 
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MATLAB Code used for 
Sound Analysis 
Modal Analysis Programming Software 

  

myFFT.m  
 
% This matlab program creates a FFT of frame of a soundfile 
%  
% myFFT(infileName, fs) 
% 
%   infileName  :   A .wav file 
%   fs          :   sampling frequency 
% 
%   ex. array = myFFT('new-B.wav', 44100); 
% 
%   Ajay Kapur,     January 5, 2001 
 
function array = myFFT(infileName, fs) 
 
% Initialize Variables  
winsize = 1024; 
fftSize = 1024; 
 
soundfile1 = wavread(infileName); % get sound file 
sound(soundfile1, fs); % play sound 
 
% find size of soundfile 
k1 = whos('soundfile1'); 
soundsize = k1.size(1); 
 
% remove DC offset 
temp = mean(soundfile1); 

Appendix 

C 
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soundfile1 = soundfile1 - temp; 
s = soundfile1(1:winsize-1); 
s = abs(fft(s, fftSize));   % fft of s 
 
plot(s(1:512,:)); 
title('Graph of FFT of first frame of sound file'); 
xlabel('Frequency (bins)'); 
ylabel('Amplitude');  
 
 
Spectrogram1.m 
 
% This matlab program creates a 3D spectogram of a STFT of a given .wav file 
% 
% Spectrogram1(infileName, fs, type) 
% 
%   infileName  :   A .wav file 
%   fs          :   sampling frequency 
%   type        :   'Log' for Logrithmic, 'Lin' for Linear 
% 
%   ex. array = Spectrogram1('new-B.wav', 44100, 'Log'); 
% 
%   Ajay Kapur,     January 6, 2002 
 
function array = Spectrogram1(infileName, fs, type) 
 
% Initialize Variables  
winsize = 1024; 
fftSize = 1024; 
hopsize = winsize*.5; % set hopsize to 50% of winsize 
 
soundfile1 = wavread(infileName); % get sound file 
sound(soundfile1, fs); % play sound 
 
% find size of soundfile 
k1 = whos('soundfile1'); 
soundsize = k1.size(1); 
 
% remove DC offset 
temp = mean(soundfile1); 
soundfile1 = soundfile1 - temp; 
 
% pre-initialize variables before loop 
pos = 1;  
frameIndex = 1; 
 
while (pos+winsize) < soundsize 
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    s = soundfile1(pos:pos+winsize-1); 
    s = abs(fft(s, fftSize));   % fft of s 
    s = s(1:fftSize/2);         % s from 0 to Nyquist frequency 
    sLog = log(s);                 % take log of s 
    if type == 'Log' 
        array(frameIndex, :) = sLog';  % put sLog into 3d array with index frameIndex 
    else 
        array(frameIndex, :) = s';  % put s into 3d array with index frameIndex 
    end 
    pos = pos + hopsize;        % increment pos 
    frameIndex = frameIndex + 1; % increment frameIndex    
end 
 
if type == 'Log'  % print out Logrithmic Spectrograms with titiles 
    waterfall(array), title('Logrithmic Spectogram'); %create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
else % print out Linear Spectrograms with titles 
    waterfall(array), title('Linear Spectogram'); %create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
end  
 
 

Spectrogram2.m  
 
% This matlab program creates a 3D spectogram of a STFT, and then splits it up  
% into 3 other AVERAGE graphs: Low, Mid, High for better analysis 
% 
% Spectrogram2(infileName, fs, type) 
% 
%   infileName  :   A .wav file 
%   fs          :   sampling frequency 
%   type        :   'Log' for Logrithmic, 'Lin' for Linear 
% 
%   ex. array = Spectrogram2('new-B.wav', 44100, 'Log'); 
% 
%   Ajay Kapur,     January 7, 2001 
 
function array = Spectrogram2(infileName, fs, type) 
 
% Initialize Variables  
winsize = 1024; 
fftSize = 1024; 
hopsize = winsize*.5; % set hopsize to 50% of winsize 
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soundfile1 = wavread(infileName); % get sound file 
sound(soundfile1, fs); % play sound 
 
% find size of soundfile 
k1 = whos('soundfile1'); 
soundsize = k1.size(1); 
 
% remove DC offset 
temp = mean(soundfile1); 
soundfile1 = soundfile1 - temp; 
 
% pre-initialize variables before loop 
pos = 1;  
frameIndex = 1; 
 
while (pos+winsize) < soundsize 
    s = soundfile1(pos:pos+winsize-1); 
    s = abs(fft(s, fftSize));   % fft of s 
    s = s(1:fftSize/2);         % s from 0 to Nyquist frequency 
    sLog = log(s);                 % take log of s 
    if type == 'Log' 
        array(frameIndex, :) = sLog';  % put sLog into 3d array with index frameIndex 
    else 
        array(frameIndex, :) = s';  % put s into 3d array with index frameIndex 
    end 
    pos = pos + hopsize;        % increment pos 
    frameIndex = frameIndex + 1; % increment frameIndex    
end 
 
% Initialize Variables before taking Average and spliting Spectrogram into 3 Arrays 
k= 10; % k is the number of frames we are going to average together 
frameIndex2 = 1;  
pos2 = 1; 
 
while pos2 < frameIndex  
 
    temp = 0; 
    for i=1:k % get average for k frames 
        temp = temp + array(pos2, :);     
        pos2 = pos2+1; 
    end 
    temp = temp/k;   
     
    arrayL(frameIndex2, :) = temp(1:floor(length(temp)/3)); % low array 
    arrayM(frameIndex2, :) = temp(floor(length(temp)/3):2*floor(length(temp)/3)); % mid 
array 
    arrayH(frameIndex2, :) = temp(2*floor(length(temp)/3):length(temp)); % high array 
 
    frameIndex2 = frameIndex2+1; % increment 
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end 
 
if type == 'Log'  % print out Logrithmic Spectrograms with titiles 
    waterfall(array), title('Logrithmic Spectogram'); %create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
    figure; 
    waterfall(arrayL), title('Logrithmic Spectogram of Low Frequency'); % create 3d graph    
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
    figure; 
    waterfall(arrayM), title('Logrithmic Spectogram of Mid Frequency'); % create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
    figure; 
    waterfall(arrayH), title('Logrithmic Spectogram of High Frequency'); % create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
else % print out Linear Spectrograms with titles 
    waterfall(array), title('Linear Spectogram'); %create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
    figure; 
    waterfall(arrayL), title('Linear Spectogram of Low Frequency'); % create 3d graph    
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
    figure; 
    waterfall(arrayM), title('Linear Spectogram of Mid Frequency'); % create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
    figure; 
    waterfall(arrayH), title('Linear Spectogram of High Frequency'); % create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
end  
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Spectrogram3.m  
 
% This matlab program creates a 3D PEAK spectogram of a STFT.  
%  
% Note: This program calls hillclimbing.m which finds the max values of the fft. 
% 
% Spectrogram3(infileName, fs, accuracy) 
% 
%   infileName  :   A .wav file 
%   fs          :   sampling frequency 
%   accuracy    :   determines how precise the peak search is 
% 
%   ex. array = Spectrogram3('new-B.wav', 44100, 40); 
% 
%   Ajay Kapur,     January 9, 2001 
 
function array = Spectrogram3(infileName, fs, accuracy) 
 
% Initialize Variables  
winsize = 1024; 
fftSize = 1024; 
hopsize = winsize*.5; % set hopsize to 50% of winsize 
 
soundfile1 = wavread(infileName); % get sound file 
sound(soundfile1, fs); % play sound 
 
% find size of soundfile 
k1 = whos('soundfile1'); 
soundsize = k1.size(1); 
 
% remove DC offset 
temp = mean(soundfile1); 
soundfile1 = soundfile1 - temp; 
 
% pre-initialize variables before loop 
pos = 1;  
frameIndex = 1; 
 
while (pos+winsize) < soundsize 
    s = soundfile1(pos:pos+winsize-1); 
    s = abs(fft(s, fftSize));   % fft of s 
    s = s(1:fftSize/2);         % s from 0 to Nyquist frequency 
    sLog = log(s);                 % take log of s and store in sLog 
    array(frameIndex, :) = s';  % put s into 3d array with index frameIndex 
    arrayLog(frameIndex, :) = sLog'; % put sLog into 3d array with index frameIndex 
     
    % do peak search % 
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    % Initialize varaiables before peak search 
    negMagThresh = max(array(frameIndex,:))/accuracy; % inputs into HillClimbing 
function 
    posMagThresh = max(array(frameIndex,:))/accuracy; % inputs into HillClimbing 
function 
    
    minLogValue = min(arrayLog(frameIndex, :)); % find min value in log data 
    arrayLog(frameIndex, :) = arrayLog(frameIndex, :) + abs(minLogValue); % shift by min 
value up, and then shift down again 
    [peakBinl, peakMagl] = hillClimbing(arrayLog(frameIndex,:), negMagThresh, 
posMagThresh); 
    arrayLog(frameIndex, :) = arrayLog(frameIndex, :) - abs(minLogValue);  % shift back 
down 
    LogPeakArray(frameIndex, :) = zeros(1,fftSize/2); % initialize LogpeakArray 
 
    for (i=1:length(peakBinl)) 
        LogPeakArray(frameIndex, peakBinl(i)) = peakMagl(i);  % create 3d array of peaks 
for log graph 
    end    
    [peakBin, peakMag] = hillClimbing(array(frameIndex,:), negMagThresh, 
posMagThresh); 
     
    PeakArray(frameIndex, :) = zeros(1,fftSize/2); % initialize peakArray 
     
    for (i=1:length(peakBin)) 
        PeakArray(frameIndex, peakBin(i)) = peakMag(i); % create 3d array of peaks for 
linear graph 
        
    end 
     
    pos = pos + hopsize;        % increment pos 
    frameIndex = frameIndex + 1; % increment frameIndex    
end 
 
waterfall(PeakArray), title('Linear graph showing Peaks of Spectrogram'); % create 3d 
graph 
xlabel('Frequency (Bins)'); 
ylabel('Time (Number of Frames)') 
zlabel('Amplitude'); 
figure; 
waterfall(LogPeakArray), title('Logrithmic graph showing Peaks of Spectrogram'); % 
create 3d graph  
xlabel('Frequency (Bins)'); 
ylabel('Time (Number of Frames)') 
zlabel('Amplitude'); 
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hillClimbing.m  
 
% This function finds peaks in FFT spectrum 
% 
% function [peakBin, peakMag] = hillClimbing(x, negMagThresh, posMagThresh) 
% [peakBin, peakMag] = hillClimbing(x, negMagThresh, posMagThresh) 
% 
% returns arrays peakBin[] and peakMag[] 
% 
 
function [peakBin, peakMag] = hillClimbing(x, negMagThresh, posMagThresh) 
 
xLen            = length(x); 
maxMag          = max(x); 
tempPeakMag = min(x); %0 
foundPeak       = 0; 
peakCount       = 1; 
 
i               = 1; 
outOfBound      = 0; 
slope           = x(i+1)-x(i); 
 
x(512) 
while 1%i < xLen-1 
        % positive slope start 
        % --------------------------- 
        while slope > 0 
 
                i = i+1;         
                if i > xLen-1                           % out of bound: > analysis window 
                        return; 
                end 
 
                slope = x(i+1)-x(i); 
                 
                if foundPeak == 1 
                        if x(i) > tempPosMagThreshOffset + posMagThresh; 
                                % reset, new hill to climb 
                                tempPeakMag =  min(x); %0 
                                foundPeak       = 0; 
                        end 
                end 
                 
        end % positive slope end 
 
        % temporarily store peak candidate       
        if x(i) > tempPeakMag 
                tempPeakBin      = i; 
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                tempPeakMag = x(i); 
        end 
         
        % negative slope start 
        % ---------------------------- 
        while slope <=0 
                 
                if foundPeak == 0                
                        if tempPeakMag - x(i) > negMagThresh 
                                foundPeak = 1; 
                                peakBin(peakCount)      = tempPeakBin; 
                                peakMag(peakCount)      = tempPeakMag; 
                                peakCount               = peakCount+1; 
                        end      
                end 
                 
                i = i+1; 
                if i > xLen-1                                   % out of bound: > analysis window 
                        return; 
                end 
                 
                slope = x(i+1)-x(i);     
                 
        end % negative slope end 
         
        % found peak  
        % -----------------------------  
        if foundPeak == 1 
                tempPosMagThreshOffset = x(i); 
        end 
end  
 

Spectrogram4.m  
 
% This matlab program creates a 3D PEAK spectogram of a STFT.  
%  
% Note: This program calls sixpeaks.m which finds the max values of the fft. 
% 
% Spectrogram4(infileName, fs) 
% 
%   infileName  :   A .wav file 
%   fs          :   sampling frequency 
% 
%   ex. array = Spectrogram4('new-B.wav', 44100); 
% 
%   Ajay Kapur,     January 9, 2001 
 
function array = Spectrogram4(infileName, fs) 
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% Initialize Variables  
winsize = 1024; 
fftSize = 1024; 
hopsize = winsize*.5; % set hopsize to 50% of winsize 
 
soundfile1 = wavread(infileName); % get sound file 
sound(soundfile1, fs); % play sound 
 
% find size of soundfile 
k1 = whos('soundfile1'); 
soundsize = k1.size(1); 
 
% remove DC offset 
temp = mean(soundfile1); 
soundfile1 = soundfile1 - temp; 
 
% pre-initialize variables before loop 
pos = 1;  
frameIndex = 1; 
 
while (pos+winsize) < soundsize 
    s = soundfile1(pos:pos+winsize-1); 
    s = abs(fft(s, fftSize));   % fft of s 
    s = s(1:fftSize/2);         % s from 0 to Nyquist frequency 
    sLog = log(s);                 % take log of s and store in sLog 
    array(frameIndex, :) = s';  % put s into 3d array with index frameIndex 
    arrayLog(frameIndex, :) = sLog'; % put sLog into 3d array with index frameIndex 
     
    % do peak search % 
     
    % Initialize varaiables before peak search 
   
    minLogValue = min(arrayLog(frameIndex, :)); % find min value in log data 
    arrayLog(frameIndex, :) = arrayLog(frameIndex, :) + abs(minLogValue); % shift by min 
value up, and then shift down again 
    [peakBinl, peakMagl] = sixpeaks(arrayLog(frameIndex,:)); 
    arrayLog(frameIndex, :) = arrayLog(frameIndex, :) - abs(minLogValue);  % shift back 
down 
    LogPeakArray(frameIndex, :) = zeros(1,fftSize/2); % initialize LogpeakArray 
 
    for (i=1:length(peakBinl)) 
        LogPeakArray(frameIndex, peakBinl(i)) = peakMagl(i);  % create 3d array of peaks 
for log graph 
    end 
         
    [peakBin, peakMag] = sixpeaks(array(frameIndex,:)); 
     
    PeakArray(frameIndex, :) = zeros(1,fftSize/2); % initialize peakArray 
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    for (i=1:length(peakBin)) 
        PeakArray(frameIndex, peakBin(i)) = peakMag(i); % create 3d array of peaks for 
linear graph        
    end 
    
    % print out Linear peaks %  
    fprintf('%f\t %f\t %f\t %f\t %f\t %f\t \n', ((fs*peakBin(1))/fftSize), 
((fs*peakBin(2))/fftSize), ((fs*peakBin(3))/fftSize), ((fs*peakBin(4))/fftSize), 
((fs*peakBin(5))/fftSize), ((fs*peakBin(6))/fftSize)); 
     
    pos = pos + hopsize;        % increment pos 
    frameIndex = frameIndex + 1; % increment frameIndex    
end 
 
waterfall(PeakArray), title('Linear graph showing Peaks of Spectrogram'); % create 3d 
graph 
xlabel('Frequency (Bins)'); 
ylabel('Time (Number of Frames)') 
zlabel('Amplitude'); 
figure; 
waterfall(LogPeakArray), title('Logrithmic graph showing Peaks of Spectrogram'); % 
create 3d graph 
xlabel('Frequency (Bins)'); 
ylabel('Time (Number of Frames)') 
zlabel('Amplitude'); 
 

 
sixpeaks.m 
 
% This function finds peaks in FFT spectrum by finding the six highest values in the 
%  FFT array.  
% 
% function [peakBin, peakMag] = hillClimbing(x) 
% [peakBin, peakMag] = hillClimbing(x) 
% 
% returns arrays peakBin[] and peakMag[] 
% 
 
function [peakBin, peakMag] = hillClimbing(x) 
    temp = x; % store x in temp  
    xlen = length(x); % store length of x 
    minx = min(x); % minimum value in x 
     
    % Find 6 peaks  
    for (j = 1:6)     
        max = minx; 
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        for (i = 1:xlen) 
            if (temp(i) > max) 
                max = temp(i); 
                tempPeakBin = i; 
                tempPeakMag = temp(i); 
            end 
        end 
        % Zero out peak 
        temp(tempPeakBin) = minx; 
        % Zero out peak in negative direction 
        slopechange = 0; 
        i = 0; 
        while (slopechange == 0) 
            if (tempPeakBin-i-1 > 0) 
             
                u = temp(tempPeakBin-i); 
                d = temp(tempPeakBin-i-1); 
                if ((u-d)>0) 
                    temp(tempPeakBin-i-1) = minx; 
                else 
                    slopechange = 1;     
                end 
                i = i + 1; 
            else 
                slopechange = 1;     
            end 
        end 
         
        % Zero out peak in positive direction 
        slopechange = 0; 
        i = 0; 
        while (slopechange == 0) 
            if (tempPeakBin+i+1 < xlen) 
                u = temp(tempPeakBin+i); 
                d = temp(tempPeakBin+i+1); 
                if ((u-d)>0) 
                    temp(tempPeakBin+i+1) = minx; 
                else 
                    slopechange = 1;     
                end 
                i = i + 1; 
            else 
                slopechange = 1;     
            end 
        end 
        peakBin(j) = tempPeakBin; 
        peakMag(j) = tempPeakMag; 
    end  
end  
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Spectrogram5.m  
 
% This matlab program creates an AVERAGE 3D PEAK spectogram of a STFT.  
% It also prints out the N highest peaks for a FFT over time. 
% Note: This program calls peaks.m which finds the max values of the fft. 
% 
% Spectrogram5(infileName, fs, type, k, numPeaks, fftSize, sorter) 
% 
%   infileName  :   A .wav file 
%   fs          :   sampling frequency 
%   type        :   'Log' for Logrithmic, 'Lin' for Linear 
%   k           :   the number of frames we are going to average together  
%   numPeaks    :   Number of Peaks to analyze  
%   fftsize     :   fftSize (number of bins) 
%   sorter      :   'Mag' will sort peaks by Magnitude, 'Bin' will sort peaks by bins  
% 
%   ex. array = Spectrogram5('new-B.wav', 44100, 'Log', 10, 6, 1024, 'Bin'); 
% 
%   Ajay Kapur,     January 10, 2001 
 
function array = Spectrogram5(infileName, fs, type, k, numPeaks, fftSize, sorter) 
 
% Initialize Variables  
 
winsize = fftSize; 
hopsize = winsize*.5; % set hopsize to 50% of winsize 
 
soundfile1 = wavread(infileName); % get sound file 
sound(soundfile1, fs); % play sound 
 
% find size of soundfile 
k1 = whos('soundfile1'); 
soundsize = k1.size(1); 
 
% remove DC offset 
temp = mean(soundfile1); 
soundfile1 = soundfile1 - temp; 
 
% pre-initialize variables before loop 
pos = 1;  
frameIndex = 1; 
 
while (pos+winsize) < soundsize 
    s = soundfile1(pos:pos+winsize-1); 
    s = abs(fft(s, fftSize));   % fft of s 
    s = s(1:fftSize/2);         % s from 0 to Nyquist frequency 
    sLog = log(s);                 % take log of s and store in sLog 
    array(frameIndex, :) = s';  % put s into 3d array with index frameIndex 
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    arrayLog(frameIndex, :) = sLog'; % put sLog into 3d array with index frameIndex 
    pos = pos + hopsize;        % increment pos 
    frameIndex = frameIndex + 1; % increment frameIndex    
end 
 
% AVERAGE SIGNAL 
 
% Initialize Variables before taking Average 
frameIndex2 = 1;  
pos2 = 1; 
 
while pos2 < frameIndex  
    temp = 0; 
    temp2 = 0; 
     
    for i=1:k % get average for k frames 
        temp = temp + array(pos2, :);     
        temp2 = temp2 + arrayLog(pos2, :);    
        pos2 = pos2+1; 
    end 
     
    temp = temp/k;   
    temp2 = temp2/k; 
     
    AvgArray(frameIndex2, :) = temp(1:(length(temp)));  
    AvgLogArray(frameIndex2, :) = temp(1:(length(temp2)));  
     
    frameIndex2 = frameIndex2+1; % increment 
end 
  
frameIndex2 = frameIndex2 -1; %decrement so can use for upperbound 
 
% do peak search % 
pos3 = 1; 
while pos3 < frameIndex2 
    % Initialize varaiables before peak search 
   
    minLogValue = min(AvgLogArray(pos3, :)); % find min value in log data 
    AvgLogArray(pos3, :) = AvgLogArray(pos3, :) + abs(minLogValue); % shift by min 
value up, and then shift down again 
    [peakBinl, peakMagl] = peaks(AvgLogArray(pos3,:), sorter, numPeaks); 
    AvgLogArray(pos3, :) = AvgLogArray(pos3, :) - abs(minLogValue);  % shift back down 
    LogPeakArray(pos3, :) = zeros(1,fftSize/2); % initialize LogpeakArray 
 
    for (i=1:length(peakBinl)) 
        LogPeakArray(pos3, peakBinl(i)) = peakMagl(i);  % create 3d array of peaks for log 
graph (Magnitude) 
    end 
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    for (i=1:length(peakBinl)) 
        lPeakArray2(pos3, i) = peakBinl(i); % create 3d array of peaks  for log graph (bins)       
    end 
     
    [peakBin, peakMag] = peaks(AvgArray(pos3,:), sorter, numPeaks); 
     
    PeakArray(pos3, :) = zeros(1,fftSize/2); % initialize peakArray    
    for (i=1:length(peakBin)) 
        PeakArray(pos3, peakBin(i)) = peakMag(i); % create 3d array of peaks for linear 
graph (magnitude)       
    end 
     
    for (i=1:length(peakBin)) 
        PeakArray2(pos3, i) = peakBin(i); % create 3d array of peaks  for linear graph (bins)       
    end 
    pos3 = pos3 + 1; 
end 
pos3 = pos3 -1; % decrement and use for printing 
 
% PRINTING AND GRAPHING 
 
if type == 'Lin'     
    % print out Linear peaks %  
    for (i=1:pos3) 
        for(j=1:numPeaks) 
            fprintf('%f\t', (fs*PeakArray2(i, j))/fftSize); 
        end 
        fprintf('\n'); 
        end 
    waterfall(PeakArray(:,:,:)), title('Linear graph showing Peaks of Spectrogram'); % create 
3d graph  
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
end 
if type == 'Log'   
     % print out Log peaks %  
    for (i=1:pos3) 
        for(j=1:numPeaks) 
            fprintf('%f\t', (fs*lPeakArray2(i, j))/fftSize); 
        end 
        fprintf('\n'); 
    end 
    waterfall(LogPeakArray(:,1:15,:)), title('Logrithmic graph showing Peaks of 
Spectrogram'); % create 3d graph 
    xlabel('Frequency (Bins)'); 
    ylabel('Time (Number of Frames)') 
    zlabel('Amplitude'); 
end  
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peaks.m  
 
% This function finds peaks in FFT spectrum by finding the six highest values in the 
%  FFT array.  
% 
% function [peakBin, peakMag] = hillClimbing(x, sorter, numPeaks) 
% [peakBin, peakMag] = hillClimbing(x) 
% 
% returns arrays peakBin[] and peakMag[] 
% 
 
function [peakBin, peakMag] = hillClimbing(x, sorter, numPeaks) 
 
    temp = x; % store x in temp  
 
    xlen = length(x); % store length of x 
    minx = min(x); % minimum value in x 
     
    %plot(x);   
    %figure; 
    % Find 6 peaks  
    for (j = 1:numPeaks)     
        max = minx; % max is max amplitude 
        for (i = 1:xlen) 
            if (temp(i) > max) 
                max = temp(i); 
                tempPeakBin = i; 
                tempPeakMag = temp(i); 
            end 
            %temp(i) 
        end 
        % Zero out peak 
        temp(tempPeakBin) = minx; 
        % Zero out peak in negative direction 
        slopechange = 0; 
        i = 0; 
        while (slopechange == 0) 
            if (tempPeakBin-i-1 > 0) 
             
                u = temp(tempPeakBin-i); 
                d = temp(tempPeakBin-i-1); 
                if ((u-d)>0) 
                    temp(tempPeakBin-i-1) = minx; 
                else 
                    slopechange = 1;     
                end 
                i = i + 1; 
            else 
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                slopechange = 1;     
            end 
        end 
         
        % Zero out peak in positive direction 
        slopechange = 0; 
        i = 0; 
        while (slopechange == 0) 
            if (tempPeakBin+i+1 < xlen) 
                u = temp(tempPeakBin+i); 
                d = temp(tempPeakBin+i+1); 
                if ((u-d)>0) 
                    temp(tempPeakBin+i+1) = minx; 
                else 
                    slopechange = 1;     
                end 
                i = i + 1; 
            else 
                slopechange = 1;     
            end 
        end 
         
        peakBin(j) = tempPeakBin; 
        peakMag(j) = tempPeakMag; 
    end  
     
    if sorter == 'Bin' 
        % sort the Bins in ascending order using bubble sort 
        for (i=1:numPeaks) 
            for(j=1:numPeaks-i) 
                if(peakBin(j+1) < peakBin(j)) 
                    tempB = peakBin(j); 
                    tempM = peakMag(j); 
                    peakBin(j) = peakBin(j+1); 
                    peakMag(j) = peakMag(j+1); 
                    peakBin(j+1) = tempB; 
                    peakMag(j+1) = tempM; 
                end 
            end 
        end 
    end 
     
end  
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MATLAB Code used for 
Sound Simulation  
Simulating a Ga stroke  

  

BayanSimulator2.m  
 
% This matlab program simulates the Bayan sound of a Tabla using the Plucked String 
Model. 
% Given the program a starting pitch and an ending pitch and it will morph  
% between the two!!!! 
%  
% BayanSimulator2(StartfreqHz,EndfreqHz, iterations, fs) 
%  
%   StartfreqHz     :   frequency in Hz of beginning tone (rounding will occur) 
%   EndfreqHz       :   frequency in Hz of end tone (rounding will occur) 
%   iterations      :   duration of sound file 
%   fs              :   sampling frequency 
% 
%   ex. signal = BayanSimulator2(150, 300, 10000, 44100) 
% 
%   Ajay Kapur,     May 11, 2001 
 
 
function signal = BayanSimulator2(StartfreqHz,EndfreqHz, iterations, fs) 
 
startN = fs/StartfreqHz; % Actual delay time 
startN = floor(startN);  % round floor down to an integer  
 
endN = fs/EndfreqHz; % Actual delay time 
endN = floor(endN);  % round floor down to an integer 
 
% See which N is bigger, StartN or endN 

Appendix 

D 
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if startN > endN 
    N = startN;           % N will be used to allocate space 
    diff = startN - endN; % diff will be used for breaking apart iterations 
else 
    N = endN;             % N will be used to allocate space 
    diff = endN - startN; % diff will be used for breaking apart iterations 
end 
 
duration = (1000*iterations/fs); % duration is length of sample (msec) 
 
% x(n): Create noise (length depends on fs/freqHz) NOT ITERATIONS!!! 
x = 2*rand(1, N); % fill x with random numbers 
x = x- mean(x);   % take away DC, signal now between -1 and 1 
 
% y(n): Create noise (length depends on iterations)  
y = [zeros(1, N+1)]; % fill y with 0's from 1 to N+1 
  
 
% x(n): pad with zeros 
if iterations > length(x) 
    d = iterations - length(x);  
    x = [x zeros(1, d)]; % add zeros after original x 
end 
 
%%%%%%%%%%%% FILTERING %%%%%%%%%%%% 
 
% initialize variables before Filtering 
temp = 0; 
signal = 0; 
lengthYoffset = length(y)-1; 
N = startN; 
for j = 1: diff 
    % When j == 1 only !!!! 
    if j == 1 
        b = iterations/(diff); 
        b = floor(b); % indixies must be integer values 
        for i = 1 : b 
            i = floor(i);  
            temp = x(i)+ (.5)*(y(N)+y(N+1));  % This line implements the filter function 
            y = [temp, y(1:lengthYoffset)];   % update y with temp 
            signal = [signal temp];   % create signal 
        end % for loop 
    else   
        a = ((j-1)*iterations)/diff; 
        b = (j*iterations)/diff; 
        a = floor(a); % indixies must be integer values 
        b = floor(b); % indixies must be integer values 
        for i = a:b  
            temp = x(i)+ (.5)*(y(N)+y(N+1));  % This line implements the filter function 
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            y = [temp, y(1:lengthYoffset)];   % update y with temp 
            signal = [signal temp];   % create signal 
        end % for loop 
    end % if/else   
 
    % adjust N value 
    if startN > endN    
        N = startN - j; % decrease N gradually by a constant j from initial value StartN to 
endN 
    else 
        N = startN + j; % increase N gradually by a constant j from initial value StartN to 
endN 
    end 
end 
 
 
%%%%%%%%ENVELOPE%%%%%%%%% 
 
% Initialize Variables  
 
amplitude = 1.0; % this is the amplitude of the attack  
times = [.1 .1 .7 .1]; % this array holds the length of attack, decay, sustain, release 
 
dur = length(signal); 
attack = times(1)*dur;   % attack time  
decay = times(2)*dur;    % decay time 
sustain = times(3)*dur;  % sustain time 
release = times(4)*dur;  % release time 
slevelstart = .7; 
slevelend= .69; 
amplitude = 1; 
 
% perform envelope 
 
env = [linspace(0,amplitude, attack), linspace(amplitude, slevelstart, decay), 
linspace(slevelstart, slevelend, sustain), linspace(slevelend, 0, release)];  % additional zero 
padding 
 
% padding : just in case 
dp= length(signal) - length(env); 
if dp  > 0 
    for i = 1:dp 
        env = [env 0]; 
    end 
end 
envsignal = env.*signal;   % make new signal with envelope 
signal = envsignal;         % set signal to enveloped signal 
 
sound(signal, fs);          % play sound 
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CoeficientFinder.m  
  
function [b,a] = CoeficientFinder(n) 
 
close all 
%m = [0 0 1 1 0 0 .8 .8 0 0 .7 .7 0 0]; 
m = [0 0 1 1 0 0 .5 .5 0 0 .3 .3 0 0]; 
 
f = [0 .003 .005 .006 .008 .009 .0095 .0105 .011 .019 .020 .022 .023 1.0]; 
[b,a] = yulewalk(n, f, m); 
b; 
a; 
%[h, w] = freqz(b,a,128); 
%plot(f,m,w/pi, abs(h)); 
 
% .0055 .01 .021 : 121.2750, 220.5, 463.0500   
[h, w] = freqz(b,a); 
freqAxis = length((h)) 
%plot([1:freqAxis]/freqAxis, abs(h)), axis([0,100/freqAxis, 0, 0.8]), hold on; 
stem(0.0055, 1, 'g'); 
stem(0.01, 1, 'g'); 
stem(0.021, 1, 'g');  
 
 

BayanSimulator3.m  
  
% function signal = BayanSimulator3(N, burst, fs, tabs, split) 
% 
%   N       : initial burst for signal 
%   burst   : iterations of signal 
%   fs      : sampling frequency 
%   tabs    : number of coeficients for filter equation 
%   split   : will only work with input 1 
% 
% ex. signal = BayanSimulator3(200, 10000, 14000, 32, 1); 
% 
% 
% Ajay Kapur May 15, 2001 
 
function signal = BayanSimulator3(N, burst, fs, tabs, split) 
 
% make random signal -1 ~ 1 with DC Compensation 
% --------------------------------------------------------------------------- 
x1 = 2*rand(1,N); 
x1 = x1 - mean(x1); 
burst = burst - length(x1); 
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x  = [x1, zeros(1, burst)]; 
 
% generate noise and init. delay line 
% make sure burst and delay line agree: burst >= delay line 
% --------------------------------------------------------------------------- 
 
 
% Filtering 
 
% .0000025 .000025 .00025 .0055 .01 .021 .415 : 121.2750, 220.5, 463.0500   
 
k = split; 
high = 0.0; 
for i = 1:k 
 
     
    m = [0 0 1 1 0  0 1 1 0  0 1 1 0 0 1 1 0 0 .5 .5 0 0 .2+high .2+high 0 0]; 
    f = [0 .000001 .000002 .000003 .000004  .00001 .00002 .00003 .00004  .0001 .0002 .0003 
.0004  .003 .005 .006 .008 .009 .0095 .0105 .011 .019 .020 .022 .023 1.0]; 
 
 
    [b,a] = CoeficientFinder(tabs, m, f); 
    if i == 1  
        d = length(x)/k; 
        d = floor(d); 
        temp = x(1:d); 
        temp2  = filter(b,a,temp); 
        signal(1:d) = temp2; 
    else 
        c = (i-1)*length(x)/k; 
        c = floor(c); 
        d = (i)*length(x)/k; 
        d = floor(d); 
        temp2 = filter(b, a, temp); 
        temp2; 
        signal(c:d) = temp2; 
    end 
end 
 
signal = 2*signal/max(signal); 
 
%%%%%%%%ENVELOPE%%%%%%%%% 
 
duration = length(x); 
time = [.05 .1 .45 .4]; 
% Initialize Variables  
a = linspace(0, 1, time(1)*duration); 
d = linspace(1, 0.7, time(2)*duration); 
s = linspace(0.7, 0.69,time(3)*duration); 
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r = linspace(0.69, 0, time(4)*duration); 
env = [a d s r]; 
 
signal = signal .* env; 
close all; % close graphs 
sound(signal, fs); 
% Play sound and plot 
% --------------------------------------------------------------------------- 
 
 

BayanSimulator.m  
  
% This matlab program simulates the Bayan sound of a Tabla  
% In this program, the filter equation changes at every iteration  
% from a lower sound to a higher sound! 
% 
% BayanStringSimulator(burst, iterations, fs) 
%  
%   burst           :   to intialize delay lines 
%   iterations      :   duration of sound file 
%   fs              :   sampling frequency 
% 
%   ex. signal = BayanSimulator(250, 10000, 8000) 
% 
%   Ajay Kapur,     May 11, 2001 
 
 
function signal = BayanSimulator(burst, iterations, fs) 
 
N = fs/burst; % Actual delay time 
N = floor(N);  % round floor down to an integer  
 
duration = (1000*iterations/fs); % duration is length of sample (msec) 
 
% x(n): Create noise (length depends on fs/freqHz) NOT ITERATIONS!!! 
x = 2*rand(1, N); % fill x with random numbers 
x = x- mean(x);   % take away DC, signal now between -1 and 1 
 
% y(n): Create noise (length depends on iterations)  
y = [zeros(1, N+1)]; % fill y with 0's from 1 to N+1 
  
 
% x(n): pad with zeros 
if iterations > length(x) 
    d = iterations - length(x);  
    x = [x zeros(1, d)]; % add zeros after original x 
end 
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%%%%%%%%%%%% FILTERING %%%%%%%%%%%% 
 
% initialize variables before Filtering 
temp = 0; 
signal = 0; 
lengthYoffset = length(y)-1; 
high = 0.0; 
low = 0.0; 
mr = 0.0; 
 
for n = 1 : iterations 
     
    % Coeficient finder 
    m = [0 0 1+low 1+low 0  0 1+low 1+low 0  0 1+low 1+low 0 0 1 1 0 0 .5+high .5+high 0 0 
.2+high .2+high 0  0];  
    f = [0 .000001 .000002 .000003 .000004  .00001 .00002 .00003 .00004  .0001 .0002 .0003 
.0004  .003 .005 .006 .008 .009+mr .0095+mr .0105+mr .011+mr .019+mr .020+mr .022+mr 
.023+mr 1.0]; 
    [b,a] = CoeficientFinder(5, m, f); 
    close all; 
    %high = .5 - n*(.5)/iterations; % high frequency amplitude (m) approach 1 (.5+.5) and 
.7 (.5+.2) 
    %low = n/iterations - .8; % low frequency amplitude (m) approach .2 (1 - .8) 
    %mr = .02 - n*(.02)/iterations; % variable to move pole up to a higher area 
     
    if (n == 1)  % special case 1 --- if n = 1, dont want to have negative indexing 
         y(1) = a(1)*x(n);  
         
    elseif (n == 2) % special case 2 --- if n = 2, dont want to have negative indexing 
           y(2) = a(1)*x(n) + a(2)*x(n-1)+b(1)*y(n-1);    
           % upate delay lines 
           y(n-1) = y(n);  
           x(n-1) = x(n); 
    elseif (n == 3) % special case 3 --- if n == 3, dont want to have negative indexing 
           y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+ b(1)*y(n-1) + b(2)*y(n-2); 
           % upate delay lines 
           y(n-2) = y(n-1); 
           y(n-1) = y(n); 
           x(n-2) = x(n-1); 
           x(n-1) = x(n); 
    elseif (n == 4) % special case 4 --- if n == 4, dont want to have negative indexing 
           y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+ b(1)*y(n-1) + b(2)*y(n-
2)+b(3)*y(n-3); 
           % upate delay lines 
           y(n-3) = y(n-2); 
           y(n-2) = y(n-1); 
           y(n-1) = y(n); 
           x(n-3) = x(n-2); 
           x(n-2) = x(n-1); 
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           x(n-1) = x(n); 
            
    elseif (n == 5) % special case 5 --- if n == 5, dont want to have negative indexing   
           y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+a(5)*x(n-4)+ b(1)*y(n-1) + 
b(2)*y(n-2)+b(3)*y(n-3)+b(4)*y(n-4); 
           % upate delay lines 
           y(n-4) = y(n-3); 
           y(n-3) = y(n-2); 
           y(n-2) = y(n-1); 
           y(n-1) = y(n); 
           x(n-4) = x(n-3); 
           x(n-3) = x(n-2); 
           x(n-2) = x(n-1); 
           x(n-1) = x(n);  
    elseif (n == 6) % special case 6 --- if n == 6, dont want to have negative indexing  
           y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+a(5)*x(n-4)+a(6)*x(n-5)+ 
b(1)*y(n-1) + b(2)*y(n-2)+b(3)*y(n-3)+b(4)*y(n-4)+b(5)*y(n-5); 
           % upate delay lines 
           y(n-5) = y(n-4); 
           y(n-4) = y(n-3); 
           y(n-3) = y(n-2); 
           y(n-2) = y(n-1); 
           y(n-1) = y(n); 
           x(n-5) = x(n-4); 
           x(n-4) = x(n-3); 
           x(n-3) = x(n-2); 
           x(n-2) = x(n-1); 
           x(n-1) = x(n);    
    else  % everyother case 
           y(n) = a(1)*x(n) + a(2)*x(n-1)+a(3)*x(n-2)+a(4)*x(n-3)+a(5)*x(n-4)+a(6)*x(n-5)+ 
b(1)*y(n-1) + b(2)*y(n-2)+b(3)*y(n-3)+b(4)*y(n-4)+b(5)*y(n-5)+b(6)*y(n-6); 
           % upate delay lines 
           y(n-6) = y(n-5); 
           y(n-5) = y(n-4); 
           y(n-4) = y(n-3); 
           y(n-3) = y(n-2); 
           y(n-2) = y(n-1); 
           y(n-1) = y(n); 
           x(n-5) = x(n-4); 
           x(n-4) = x(n-3); 
           x(n-3) = x(n-2); 
           x(n-2) = x(n-1); 
           x(n-1) = x(n); 
    end  % end if else 
    %accumulate output array; 
    signal = [signal y(n)];  
 end  
 
%%%%%%%%ENVELOPE%%%%%%%%% 
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% Initialize Variables  
 
duration = length(x); 
time = [.05 .1 .45 .4]; 
% Initialize Variables  
a = linspace(0, 1, time(1)*duration); 
d = linspace(1, 0.7, time(2)*duration); 
s = linspace(0.7, 0.69,time(3)*duration); 
r = linspace(0.69, 0, time(4)*duration); 
env = [a d s r 0]; 
 
 
signal = signal .* env; % set signal to enveloped signal 
 
sound(signal, fs);          % play sound  
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Program Notes  
Preparation & Concentration 

“Samsara”   
This song describes our daily cycle and its correlation to the Buddhist idea of 
existing in our physical world – a world of passions, attachments, multiplicities, 
and in a certain sense, illusions. One goes through daily routines only to find that 
these routines must be repeated, endlessly. In much the same way, Buddhism 
teaches that we are caught in Samsara, the endless cycle of birth and rebirth.  We 
dull and cover this suffering by keeping ourselves busy, by hiding, by becoming 
numb. The final bell ring represents the summoning to awake. This song was 
written in June of 2001 in the Zookjera house in Hopewell, NJ. The lyrics, written 
by Adam Nemett, are included.    
 
Composers Ajay Kapur, Dave Hittson, Peter Lee, Adam Nemett 
  
 
Performers Dave Hittson (vocals)  
 Peter Lee (guitar)  
  Tae Hong Park (bass)  
 Audrey Wright (flute) 
 Ajay Kapur  (drum set, Nepalease bells) 

“Arthur”   
Arthur is a sample from the musical score being composed for the forthcoming 
film, Art & The Instrument.  Written by Adam Nemett, the film is about an 
enigmatic art school janitor (Arthur) who passes away, but leaves behind the 
blueprints and electronic instruments for a new system of ritual worship – a 
system which uses music as its driving force. This song is an attempt to 
intertwine the kernels behind some of Arthur’s rituals, drawing on musical ideas 
such as Inspiration, Attack, and Consonance. This song was written in December 
of 2001 in the Pennington house. With any luck, Art & The Instrument will be 
showing in theaters across the nation in Spring of 2003. 
 
Composers Ajay Kapur & David Hittson  
 
Performers Dave Hittson (vocals, acoustic guitar)  
 Philip Blodgett (vocals, bass)   
 Jason Park (guitar) 
 Ajay Kapur  (drum set) 
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“Manoj”   
This electrono-mified, tribal groove song is based on the power of escalating 
energy flow. Sit back, relax and let a higher state of mind take hold. This song 
was written for and dedicated to a good friend experiencing difficult times. It 
was written in November of 2000 in the Zookjera house in Hopewell, NJ.  
 
Composers Dave Hittson, Ajay Kapur, Peter Lee 
 
Performers Perry Cook (DGtalFlow)  
 Peter Lee (guitar)  
  Tae Hong Park (bass)  
 David Hittson (guitar) 
 Ajay Kapur  (drum set) 
 
Manifestation 
 

Introducing the Electronic Tabla (ETabla). The 
Electronic Tabla triggers both sound and graphics 
simultaneously.  It allows for a variety of traditional 
tabla strokes and new performance techniques, while 
graphic feedback allows for artistic display. Philip 
Davidson will be controlling shapes, colors, and 
textures of graphics, reacting real-time to changes in 
mood, tempo and style of the performed ETabla music. 

“Bupali Raag”   
We introduce the Electronic Tabla by playing a North Indian classical piece. The 
Bupali Raag (based on the major pentatonic scale) will be played over a tin taal 
theka (16 beat pattern).  
  
Performers Audrey Wright (bansuri flute)  
 Ajay Kapur  (ETabla) – World Premiere 
  

“Fire Fly and the Ghost”   
This song is based on a meditation practice developed by Abraham Abulafia, a 
13th century Jewish mystic. By permutating the letters of the names of God 
according to a specific formula of chanted vowels, Abulafia found an effective 
and ecstatic method of heightening his meditative concentration. The lyrics of 
this song follow Abulafia’s model: each line ends in an extended vowel sound, 
moving along the progression, OH—AH—AY—EE—OO. In the next verse, the 
pattern begins again at a new starting place, AH—AY—EE—OO—OH, and so 
on.  This song was written in June of 2001 in the Zookjera house in Hopewell, NJ.  
 
Composers Peter Lee, Dave Hittson, Adam Nemett, Ajay Kapur 
 
Performers David Hittson (vocals)  
 Peter Lee (guitar)   
 Audrey Wright (flute) 
 Ajay Kapur  (ETabla) 



 

128128128128 

 
 

“In and Out with Samba”   

This song features Christoph Geiseler on The Groovebox: Roland MC-505. ‘In 
and Out with Samba’ is a demonstration of its musical potential, and even more 
so, an indication of the limitless plane of the modern musical era. The name of 
the piece indicates the fluidity of the music and is emblematic of the versatility of 
moving between one genre of music and another.  By paying close attention to 
the rhythm of the piece, one can perceive the juxtaposition between the 
Electronic Tabla and the pre-programmed Groovebox, but simultaneously 
understand how the two work together to mesh an electronic element with an 
improvisational impulse. 
 
Composers Christoph Geisler & Ajay Kapur 
 
Performers Christoph Geisler (GrooveBox) 
 Ajay Kapur  (ETabla) 

“Dissonance Ritual”    
This piece has four movements of electronic dissonance. The first movement 
starts out with a call-and-response between the ETabla, DgtlFlow, and 
Groovebox. In the second movement, this energy grows into a simple melodic 
theme played on guitar and bass. This flows into a third movement marked by 
high velocity and interaction. The piece ends on a fourth movement Drum n’ 
Bass groove.       
 
Composers Ajay Kapur, David Hittson, Christoph Geiseler 
 Tae Hong Park, Perry Cook 
  
Performers Perry Cook (DGtlFlow)   
 Tae Hong Park (bass) 
 David Hittson (guitar)   
 Christoph Geisler (GrooveBox) 
 Ajay Kapur  (ETabla) 

“Harmony Ritual”   
This piece is a folk-rock piece centered around the resolution of dissonances into 
consonances. Both the melodies and harmonic progressions make use of these 
resolutions to most strongly convey “consonant sweetness”. This song was 
written in July of 2001 in the Zookjera house in Hopewell, NJ, on David’s 
Birthday.  
 
Composers Dave Hittson, Richard Bruno, Jason Park  
 
Performers David Hittson (vocals, acoustic guitar)  
 Jason Park (guitar)   
 Philip Blodgett (bass, vocals) 
 Richard Bruno (vocals, acoustic guitars) 
 Ajay Kapur  (ETabla) 
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Biographies 
 
Philip Blodgett 
Philip A. Blodgett is philosophy major who plays many instruments including drum set, 
bass, and guitar. He currently serves as vocalist, instrumentalist, and percussionist for 
many musical groups including the Rhythm Method and Lack of Use.    
 
Richard Bruno 
Richard Bruno is a psychology major who just finished his thesis on melodic perception. 
He has been writing songs and playing in bands since junior high school, and is most 
recently a member of The Subcons. Richard also sings with the a cappella group, Shere 
Khan and has taken voice lessons here at Princeton. 
  
Perry Cook 
Perry R. Cook attended the University of Missouri at Kansas City Conservatory of Music 
from 1973 to 1977, studying voice and electronic music.  He worked as a sound engineer 
and designer from 1976 - 1981.  He received the BA in music 1985, and the BS in 
Electrical Engineering in 1986 from UMKC.  He received a Masters and PhD in Electrical 
Engineering from Stanford in 1990.  He continued at Stanford as Technical Director of 
the Center for Computer Research in Music and Acoustics, until joining the faculty of 
Princeton University in 1996, where he is now Associate Professor of Computer Science, 
with a joint appointment in Music.  He has published nearly 100 technical/music 
papers, and presented lectures throughout the world on the acoustics of the voice and 
musical instrument simulation, human perception of sound, and interactive devices for 
expressive musical performance.  Mr. Cook has performed as a vocal soloist and as a 
computer musician throughout the world, and has recorded Compact Disks on the 
Lyricord Early Music Series Record Label with the vocal group Schola Discantus.  
 
Philip Davidson 
Philip Davidson '02 is a senior majoring in computer science with a focus on graphics 
and visualization. He has worked with the display wall group, the committee for 
abstract events, the Nassau Weekly, and terrace club. He is presently interested in 
human interfaces for electroaudiovisual installation and performance, research into non-
photorealistic rendering methods, and finding a job. He would like to thank Lansing 
NY, NYC, Jersey City NJ, Washington DC, and especially Duluth MN for their fine 
populace. 
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Christoph Geiseler 
Christoph Geiseler is a sophomore in the politics department. He has played classical 
and jazz guitar for 7 years, played in a high-school jam-band, and now DJ-ing is his 
current fascination. In this concert, Christoph plays the Roland’s MC-505 (drum-
machine/synthesizer/sequencer/mixer/sampler) which can speak the musical 
language in thousands of different dialects, keys, tempos, and grooves.  Can you 
imagine speaking Chinese with an Italian rhythm or Swahili with a French moue?  The 
groovebox literally does the same thing with all forms of music by regulating pitch, 
tempo, dynamics, and, most importantly, melody, to create extremely adaptable and 
modifiable musical sequences. Christoph hopes this experience we share together in the 
Electronic Tabla Project will redefine or even spark a general interest and love for music 
in all its various forms and functions.   
 
David Hittson 
David is a music major with experience on the bass, guitar, piano, violin and voice. His 
musical life began at age two and he hopes it will continue far into the future. He would 
like to thank his parents, teachers and the music department. Also, he would like to 
congratulate Ajay on his impressive thesis accomplishment, and in general. 
 
Ajay Kapur 
Ajay is a computer science major who has taken 12 courses in the Music Department. He 
developed the Electronic Tabla as his senior thesis under the mentorship of Professor 
Perry Cook, and team effort of Georg Essl and Philip Davidson. Ajay has played drum 
set for 12 years, and has recently started playing other world percussion instruments 
such as djembe, tabla, and dolak. He has played in several bands since he was in high 
school, the most significant one to him being Zookjera, in which he was able to find 
himself as a musician.  Ajay would like to thank his music teahers John Arucci, John 
Mastriani, Tony Branker, Bob Nolte, Rakesh Kumar Parihast, and Professor Perry Cook. 
Ajay plans to study Indian Classical music in India next year while continuing to create 
new instruments for musical expression.  

Peter Lee 
Classically trained, Peter started lessons on the piano at age 4, moving to the violin at 
age 8.  At age 13, he heard his first Jimi Hendrix album and was hooked.  He bought an 
electric guitar, started a band, and has been playing ever since.  He would like to thank 
his teachers Stephen Wolosonovich, Michael Rosenbloom, and Bruce Arnold. 
 
Adam Nemett 
Adam is a religion major involved with the creative writing department.  He is Co-
Editor-in-Chief of the Nassau Weekly and co-founder of the student organization, 
Modern Improvisational Music Appreciation (MIMA).  He served as lyricist and spoken-
word vocalist for Zookjera. Currently, Adam is writing and directing a feature-length 
film, featuring music composed by Ajay and Dave and centered around Ajay’s digital 
musical instruments.   
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Jason Park  
Jason Park is a philosophy major who has played guitar for 8 years. He currently plays 
in the Rhythm Method with Phil Blodgett.   
 
Tae Hong Park  
Tae Hong Park received his B.E degree in Electronics at Korea University in 1994 and 
has worked in the area of digital communication systems and digital musical keyboards 
at the GoldStar Central Research Laboratory in Seoul, Korea from 1994 to 1998.  He 
received his M.A. from Dartmouth’s Electroacoustic Music Program in June 2000 and is 
currently a Ph.D. student at Princeton’s Composition program.  His current interests are 
primarily in musical and technical issues in computer and electroacoustic music, which 
include composition and research in multi-dimensional aspects of timbre.     
 
Audrey Wright  
Audrey can often be found playing with some musical group or other--be it the 
Princeton University Jazz Ensemble, the Klez Dispensers, the Emergency Funk Squad, or 
the Ellipsis Jazz Project... She was recently introduced to indian classical music, and 
loved it so much that she decided to try playing the bansuri flute! 
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Lyrics – By Adam Nemett 
 

Samsara 
 
Wake. 
Darkness melting sun rays give way to day 
Top-sheet tied and bleary eyed, can’t be late. 
Gotta make it there by eight 
Water wash away the mind 
The wrinkled lines and slumber signs. 
 
   Time it unwinds, my slowing, 
   Why is it always so hard to get going? 
 
Fiend. 
Peeling out to fill up my gasoline 
and shoot the bull and pump me full of caffeine 
but a break is seldom seen 
Daddy’s watching me behave 
The norm has formed me to a slave. 
 
     We thrive on prizes 
     Can this be what being alive is? 
 
Wake, 
Fiend of Day, 
Escape 
Then we fly away. 
 
Hide. 
Fighting too much, sliding into the night. 
The quiet sparks remind the dark of its light, 
But the world has tied me tight 
Might need some numbing 
to call the King and let me sing. 
 
    Blankets thrown over sorrow 
    But will it still be there tomorrow? 
 
Curse. 
Gently trapped inside the endless curl 
And let unfurl the sorry Samsara world. 
So we dance the daily twirl, 
Means lead to ends 
Or does it just begin again?  
 

 

 

 

 



 

 133133133133  

 Firefly and Abulafia’s Ghost  
 
Catch a single firefly in a field and the buzz  
is slow and lonely compared to the full feel  
of the congregated party,  
lit like lights winking on liquid. 

Blur the aimed gaze 
and let eyes out to play with the periphery 
like two kids taking in  
the carnival of a thousand syncopating winks. 
When playing hide n’ seek in waving wheat,  
it’s easy to lose and find focus. 

 
Go, 
Find me a fall 
Spring from the day, when you can’t see  
You see what’s true. 
You know the way, 
I’ll try and meet you. 
 
Dark,  
I like it that way, 
Stray from the city to the woods 
The green lights glow. 
Lone but complete, 
Make sure you go. 

Chorus 
Ghost roll  
Disarray  
Look up 
All be laughing in the passion 
Play fair  
Head games 
Intertwine  
His names 
 
Stay, 
lay close to me 
even the moon looks like it knows 
just where we are. 
‘Cross the cartoon 
of lightning bug stars. 
 
See, 
Open the book 
Watch it unfold until lights fall 
And dim away. 
Call from the Ghost, 
Back to the day. 
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Under the muffle of midnight 
those whispered secrets somehow 
seep between cracks 
of seamless trees, 
stumbling and falling 
like weary travelers 
coming upon the cottage 
of Another’s open ear.
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