
Musical Tapestry: Re-composing Natural Sounds

Ananya Misra, Perry R. Cook†, Ge Wang
Department of Computer Science (†also Music), Princeton University

{amisra, prc, gewang}@cs.princeton.edu

Abstract
A system to aid composition with analysis, transformation,
and resynthesis of natural sounds is described. Sinusoidal
analysis is used to isolate and extract deterministic sounds,
and transients are also isolated/extracted, leaving the stochas-
tic background sound which is parameterized by wavelet tree
analysis. All of these components become templates for the
synthesis phase, which is controlled 1) by placing templates
on timelines or in groups, 2) by real-time manipulation of
parameters, and 3) via scripting using the ChucK language.
The result is a flexible “workbench” for doing modern day
musique concrète or acousmatic composition, sound design,
and other sonic sculpting tasks.

1 Motivation
Around 1950, Pierre Schaeffer developed musique concrète
(Schaeffer 1950; Schaeffer 1952). Unlike traditional music,
musique concrète starts with existing or concrete recorded
sounds, which are organized into abstract musical structures.
The existing recordings often include natural and industrial
sounds that are not conventionally musical, but can be ma-
nipulated to make music, either by editing magnetic tape or
now more commonly through digital sampling. Typical ma-
nipulations include cutting, copying, reversing, looping and
changing the speed of recorded segments.

Today, several other forms of electronic/electroacoustic
music also involve manipulating a set of recorded sounds.
Acousmatic music (Dhomont 1995), for instance, evolved from
musique concrète and refers to compositions designed for en-
vironments that emphasize the sound itself rather than the
performance-oriented aspects of the piece.

The acoustic ecology (Schafer 1977) movement gave rise
to soundscape composition (Truax 2002) or the creation of re-
alistic soundscapes from recorded environmental audio. One
of the key features of soundscape composition, according to
Truax, is that “most pieces can be placed on a continuum be-
tween what might be called ‘found sound’ and ‘abstracted’
approaches.” However, while “contemporary signal process-
ing techniques can easily render such sounds unrecognizable

and completely abstract,” a soundscape composition piece is
expected to remain recognizable even at the abstract end of
the continuum.

Sound designers for movies, theater and art often have
a related goal of starting with real world sounds and creat-
ing emotionally evocative sound scenes, which are still real,
yet transformed and transformative. Classic examples include
mixing a transformed lion’s roar with other sounds to accom-
pany the wave sounds in The Perfect Storm, and incorporat-
ing a helicopter theme into the sound design for Black Hawk
Down (Rudy 2004). These sound designers are “sound sculp-
tors” as well, but transform sounds to enhance or create a
sense of reality, rather than for purely musical purposes.

Artists from all of the above backgrounds share the pro-
cess of manipulating recordings, but aim to achieve differ-
ent effects. We present a single framework for starting with
recordings and producing sounds that can lie anywhere on a
‘found’ to ‘unrecognizable’ continuum. ‘Found’ sounds can
be modified in subtle ways or extended indefinitely, while
moving towards the ‘unrecognizable’ end of the spectrum un-
leashes a range of manipulations beyond time-domain tech-
niques. In fact, the same set of techniques applies throughout
the continuum, differing only in how they are used. We call
this framework TAPESTREA: Techniques and Paradigms for
Expressive Synthesis, Transformation and Rendering of En-
vironmental Audio.

The TAPESTREA system integrates sinusoidal analysis,
stochastic background modeling, transient detection, and a
new class of user interface that lends itself to any compo-
sition that originates in recorded environmental audio. This
envelopes a novel form of musique concrète that extends to
manipulations in the frequency as well as time domain. Ad-
vantages of the TAPESTREA approach include:

• TAPESTREA lets the sound sculptor select a region in both
time and frequency, essentially specifying, “Give me this
part of that sound,” to extract a reusable sound template.
Existing techniques for manipulating recordings – both time-
domain-centric methods and spectrally oriented approaches,
such as the phase vocoder – support only moderate trans-
formations. TAPESTREA leverages sinusoidal modeling



Figure 1: Creating musical tapestries. User-selected regions of input sounds (left) are analyzed into reusable templates, which
are separately transformed and resynthesized into new sounds (right). Numbered diamonds (right) correspond to instances of
original sound components (circled, left). The framework allows flexible control at every stage in the process.

to enable high-quality, potentially extreme, time and fre-
quency transformations on appropriate template types.

• TAPESTREA defines three fundamental types of sound com-
ponents / templates, based on the modeling techniques for
which they are best suited. Deterministic (sinusoidal), tran-
sient, and stochastic background components are modeled
separately, using methods to which they are most amenable,
leading to specialized control and more powerful transfor-
mations on each type.

• To realize these ideas, TAPESTREA provides a set of in-
terfaces that allow the sound designer or composer to as-
sert parametric control over each phase in the process, from
component extraction to the final resynthesis.

TAPESTREA manipulates sounds in several phases (Fig-
ure 1). In the analysis phase, the sound is separated into
reusable components that correspond to individual foreground
events or background textures. In the synthesis phase, these
components are transformed, combined and re-synthesized
using time- and frequency-domain techniques that can be con-
trolled on multiple levels. While we highlight the synthesis
methods here, the analysis phase is also integral as it enables
the most flexible means for dealing with real-world sonic ma-
terial.

2 Related Work
Related techniques used for musical composition include

spectral modeling synthesis (Serra 1989) and granular synthe-
sis (Truax 1990; Roads 2002). Spectral modeling synthesis
separates a sound into sinusoids and noise, and was originally
used for modeling instrument sounds. Granular synthesis, in
contrast, functions in the time-domain and involves contin-
uously controlling very brief sonic events or sound grains.
TAPESTREA employs aspects of both, using separation tech-
niques on environmental sounds and controlling the temporal
placement of resulting events.

Another technique used in TAPESTREA is an extension
of a wavelet tree learning algorithm (Dubnov et al. 2002)
for sound texture synthesis. This method performs a wavelet
decomposition on a sound clip and uses machine learning
on the wavelet coefficients to generate similar non-repeating
sound texture. The algorithm works well for sounds that are
mostly stochastic, but can break extended pitched portions in
objectionable ways. It can also be slow in its original form.
TAPESTREA takes advantage of this technique by improving
the speed of the algorithm, and only using it on the types of
(non-deterministic) sound for which it works well.



3 Analysis Phase
TAPESTREA starts by separating a recording into deter-

ministic events or stable sinusoidal components of the sound,
transient events or brief noisy bursts of energy, and the re-
maining stochastic background or din. This separation can
be parametrically controlled and takes place in the analysis
phase. In a sense, boundaries between component types are
not rigid, but are interactively defined by the user.

The analysis interface is shown in the accompanying fig-
ures. A loaded sound is simultaneously displayed as a wave-
form and a spectrogram (Figure 2). The spectrogram display
can also be toggled with a frame-by-frame spectrum view
(Figure 3). Selecting a rectangle on the spectrogram, or se-
lecting an analysis region on the waveform and the frame-by-
frame spectrum, limits the analysis to the associated time and
frequency ranges, facilitating the selection and extraction of
specific events.

Analysis Region
(time and frequency)

Performs Extraction
(action depends on 

template type)

Toggle 
Spectrogram

vs.
Instantaneous 

Spectrum Display

Spectrogram 
View

Figure 2: Spectrogram view in analysis face.

Deterministic events are foreground events extracted by
sinusoidal modeling based on the spectral modeling frame-
work (Serra 1989). Overlapping frames of the sound are
transformed into the frequency domain using the FFT. For
each spectral frame, the n highest peaks above a specified
magnitude threshold (Figure 3) are recorded, where n can
range from 1 to 50. These peaks can also be loaded from
a preprocessed file. The highest peaks from every frame are
then matched across frames by frequency, subject to a con-
trollable “frequency sensitivity” threshold, to form sinusoidal
tracks. Tracks can be “mute” (below the magnitude thresh-
old) for a specified maximum number of frames, or can be
discarded if they fail to satisfy a minimum track length re-
quirement (Figure 4). Undiscarded tracks are optionally group-
ed (Ellis 1994; Melih and Gonzalez 2000) by harmonicity,
common amplitude and frequency modulation, and common

Spectrum 
View

Magnitude 
Threshold

Frequency Range 
Boundaries

Figure 3: Spectrum view in analysis face.

onset/offset, to form deterministic events, which are essen-
tially collections of related sinusoidal tracks. If the group-
ing option is not selected, each track is interpreted as a sepa-
rate deterministic event. After the separation, the sinusoidal
tracks found are marked on the spectrogram display. Each
deterministic event can be individually played and saved as a
template for use in the synthesis phase.

Sinusoidal 
Extraction 

Parameters

Sets of 
Parameters

Figure 4: Sliders for sinusoidal analysis.

Transient events or brief noisy foreground events are usu-
ally detected in the time-domain by observing changes in sig-
nal energy over time (Verma and Meng 1998; Bello et al.
2005). TAPESTREA analyzes the recorded sound using a
non-linear one-pole envelope follower filter with a sharp at-
tack and slow decay and finds points where the derivative of
the envelope is above a threshold. These points mark sud-
den increases in energy and are interpreted as transient on-



sets. A transient event is considered to last for up to half
a second from its onset. The exact transient length, as well
as the threshold, and filter parameters can all be modified in
real-time via sliders (Figure 5). Detected transients can be
individually replayed and saved as templates.

Transient 
Extraction 

Parameters

Figure 5: Transient analysis sliders.

The stochastic background represents parts of the record-
ing that constitute background noise, and is obtained by re-
moving the detected deterministic and transient events from
the initial sound. Deterministic events are removed by elim-
inating the peaks of each sinusoidal track from the corre-
sponding spectral frames; the magnitudes of the bins beneath
the peak are smoothed down, while the phases in these bins
are randomized (Figure 6). Transient events, in turn, are re-
moved in the time-domain by applying wavelet tree learn-
ing (Dubnov et al. 2002) to generate a sound clip that resem-
bles nearby transient-free segments of the recording. This
synthesized “clean” background replaces the samples con-
taining the transient event to be removed. Once separated,
the stochastic background can be saved, played, or loaded
into the interface for further iterative analysis.

Separating a sound into components in this way has sev-
eral advantages. The distinction between foreground and back-
ground components is semantically clear to humans, who can
therefore work within the framework with a concrete under-
standing of what each component represents. The different
component types are also stored and processed separately ac-
cording to their defining characteristics, thus allowing flexible
transformations on individual components. Each transformed
component can be saved as a template and later reloaded,
reused, copied, further transformed, or otherwise treated as
a single object. In addition, the act of separating a sound into
smaller sounds makes it possible to “re-compose” them into
a variety of pieces by combining templates in diverse ways.

Extracted 
Sinusoidal Track(s)

Residue
stochastic + 

unwanted sinusoidal 
components

Separated 
Spectrum 

View

Figure 6: Spectrum of separated sinusoidal peaks (top) and
stochastic residue (bottom).

4 Synthesis Phase
Once the components of a sound have been separated and

saved as templates, TAPESTREA allows each template to be
transformed and synthesized individually. The synthesis in-
terface (Figure 7) provides access to the current library of
saved templates, displayed as objects (Figure 8). Templates
saved to file from prior sittings can be loaded into the library,
too. Selecting any template in the library displays a set of
transformation and synthesis parameters suited to the tem-
plate type. A selected template can be synthesized to generate
sound at any time, including while its transformation param-
eters are being modified. At this point, TAPESTREA also
offers additional synthesis templates to control the placement
or distribution of basic components in a composition. Thus,
components can be manipulated individually and in groups,
modeling both single sound and group characteristics. The
transformation and synthesis options for the different tem-
plate types are as follows:

4.1 Deterministic Events
Deterministic events are synthesized from their tracks via

sinusoidal re-synthesis. Frequency and magnitude between
consecutive frames in a track are linearly interpolated, and
time-domain samples are computed from this information.

The track representation allows considerable flexibility in
applying frequency and time transformations on a determinis-
tic event. The event’s frequency can be linearly scaled before
computing the time-domain samples, by multiplying the fre-
quency at each point on its tracks by a specified factor. Sim-
ilarly, the event can be stretched or shrunk in time by scal-
ing the time values in the time-to-frequency trajectories of its



Timeline
supports arbitrary length 
and template placement 
and nesting inside other 

timelines

Library
transformable, 

reusable templates Real-time Parametric 
Control for Resynthesis

contents depend on 
selected template type

Figure 7: Screenshot of transformation + synthesis interface.

tracks. This works for almost any frequency or time scaling
factor without producing artifacts. Frequency and time trans-
formations can take place in real-time in TAPESTREA, al-
lowing an event to be greatly stretched, shrunk or pitch shifted
even as it is being synthesized.

Scripts

Template 
LibraryStochastic 

Residue

Sinusoidal 
Template

TransientTimeline

Figure 8: Library of saved templates.

4.2 Transient Events
Since transient events are brief by definition, TAPESTREA

stores them directly as time-domain audio frames. Synthesiz-
ing a transient event without any transformations, therefore,
involves playing back the samples in the audio frame.

In addition, TAPESTREA allows time-stretching and pitch-
shifting in transient events as well. This is implemented us-
ing a phase vocoder (Dolson 1986), which limits the scaling
factors to a range smaller and perhaps more reasonable than
what is available for deterministic events, yet large enough to
create noticeable effects.

Transient events by nature can also act as “grains” for tra-
ditional granular synthesis (Truax 1990; Roads 2002). The
transformation tools for transients, along with the additional
synthesis templates described in Sections 4.4 to 4.6, can thus
provide an interactive “granular synthesis” interface.

4.3 Stochastic Background
The internal representation of a stochastic background tem-

plate begins with a link to a sound file containing the re-
lated background component extracted in the analysis phase.
However, merely looping through this sound file or randomly
mixing segments of it does not produce a satisfactory back-
ground sound. Instead, our goal here is to generate ongoing
background that sounds controllably similar to the original
extracted stochastic background.

Therefore, the stochastic background is synthesized from
the saved sound file using an extension of the wavelet tree
learning algorithm (Dubnov et al. 2002). In the original al-
gorithm, the saved background is decomposed into a wavelet
tree where each node represents a coefficient, with depth cor-
responding to resolution. The wavelet coefficients are com-
puted using the Daubechies wavelet with 5 vanishing mo-
ments. A new wavelet tree is then constructed, with each
node selected based on the similarity of its ancestors and first
k predecessors to corresponding sequences of nodes in the
original tree. The learning algorithm also takes into account
the amount of randomness desired. Finally, the new wavelet
tree undergoes an inverse wavelet transform to provide the
synthesized time-domain samples. This learning technique
works best with the separated stochastic background as input,
where the sinusoidal events it would otherwise chop up have
been removed.

TAPESTREA uses a modified and optimized version of
the algorithm, which follows the same basic steps but varies
in details. For instance, the modified algorithm includes the
option of incorporating randomness into the first level of learn-
ing, and also considers k as dependent on node depth rather
than being constant. More importantly, it optionally avoids
learning the coefficients at the highest resolutions. These
resolutions roughly correspond to high frequencies, and ran-
domness at these levels does not significantly alter the results,
while the learning involved takes the most time. Optionally
stopping the learning at a lower level thus optimizes the algo-
rithm and allows it to run in real-time.

Further, TAPESTREA offers interactive control over the
learning parameters in the form of “randomness” and “sim-
ilarity” parameters. The size of a sound segment to be an-
alyzed as one unit can also be controlled, and results in a
“smooth” synthesized background for larger sizes versus a
more “chunky” background for smaller sizes. Creatively ma-



nipulating these parameters can, in fact, yield interesting mu-
sical compositions generated through “stochastic background”
alone.

4.4 Event Loops
Event loops (Figure 9) are synthesis templates designed

to facilitate the parametric repetition of a single event. Any
deterministic or transient event template can be formed into
a loop. When the loop is played, instances of the associated
event are synthesized at the specified density and periodic-
ity, and within a specified range of random transformations.
These parameters can be modified while the loop is playing,
to let the synthesized sound change gradually.

Re-synthesis 
Control Panel

(real-time)
contents depend 

on selected 
template type

Selected 
Template
(and type)

Figure 9: Sliders for controlling an event loop.

The density refers to how many times the event is repeated
per second, and could be on the order of 0.001 to 1000. At
the higher densities, and especially for transient events, the
synthesized sound is often perceived as continuous, thus re-
sembling granular synthesis.

The periodicity, ranging from 0 to 1, denotes how peri-
odic the repetition is, with a periodicity of 1 meaning that the
event is repeated at fixed time intervals. The interval between
consecutive occurrences of an event is generally determined
by feeding the desired periodicity and density into a Gaus-
sian random number generator. It is straightforward to re-
place this generator with one that follows a Poisson or other
user-specified probability distribution.

In addition to the parameters for specifying the tempo-
ral placement of events, TAPESTREA allows each instance
of the recurring event to be randomly transformed within a
range. The range is determined by selected average frequency-
and time-scale factors, and a randomness factor that dictates
how far an individual transformation may vary from the aver-
age. Individual transformation parameters are uniformly se-

lected from within this range. Apart from frequency and time
scaling, the gain and pan of event instances can also randomly
vary in the same way.

4.5 Timelines
While a loop parametrically controls the repetition of a

single event, with some amount of randomization, a timeline
allows a template to be explicitly placed in time, in relation
to other templates. Any number of existing templates can be
added to a timeline, as well as deleted from it or re-positioned
within it once they have been added.

A template’s location on the timeline indicates its onset
time with respect to when the timeline starts playing. When
a timeline is played, each template on it is synthesized at the
appropriate onset time, and is played for its duration or till
the end of the timeline is reached. The duration of the entire
timeline can be on the order of milliseconds to weeks, and
may be modified after the timeline’s creation.

TAPESTREA also allows the placement of timelines within
timelines (or even within themselves). This allows for tem-
plate placement to be controlled at multiple time-scales or
levels, making for a “multiresolution synthesis.”

4.6 Mixed Bags
Another template for synthesis purposes is the mixed bag

(Figure 10), which is designed to control the relative densi-
ties of multiple, possibly repeating, templates. Like a time-
line, a mixed bag can contain any number of templates, but
these are randomly placed in time and transformed, as in
loops. The goal is to facilitate the synthesis of a compo-
sition with many repeating components, without specifying
precisely when each event occurs. The real-time parameters
for controlling this also enable the tone of a piece to change
over time while using the same set of components, simply by
synthesizing these components differently.

When a template is added to a mixed bag, it can be set to
play either once or repeatedly. It also has a “likelihood” pa-
rameter, which determines the probability of that template’s
being played in preference over any of the other templates in
the bag. Finally, it has a “randomness” parameter, which con-
trols the range for random transformations on that template,
analogous to the randomness control in event loops.

Beyond these individual template parameters, each mixed
bag has overall periodicity and density settings, which control
the temporal distribution of repeating templates in the same
way that an event loop does. However, while an event loop
plays instances of a single event, a mixed bag randomly se-
lects a repeating template from its list whenever it is time to
synthesize a new instance. Templates with higher likelihood
settings are more likely to be selected for synthesis.



Mixed Bag
Control Panel
(real-time)

Templates 
in the Bag

Individual 
Parameters

Template-
sensitive 

option

Figure 10: Sliders for controlling items in a mixed bag.

4.7 Pitch and Time Quantizations
While sliders control the synthesis parameters in a contin-

uous way, more customized musical control can be exerted by
quantizing pitches and times to user-specified values. Pitch
and time tables can be loaded on-the-fly for each template.

The frequency scaling factor of a template is quantized
to the the nearest entry in its pitch table, if it has one. For
event loops and mixed bags, this controls the possible fre-
quency scaling during random transformations on the under-
lying events. The frequencies of individual templates on a
timeline are scaled, in the order in which they are played, by
successive entries on the timeline’s pitch table. This allows a
user-defined musical scale to be applied to most templates.

Rhythm can be similarly specified by quantizing time to
the nearest entry in a time table. In event loops and mixed
bags, this quantizes the event density parameter as well as
the intervals between consecutive events. On timelines, tem-
plates are positioned only at time points corresponding to ta-
ble entries, if a table exists. Thus, templates can can start
synthesizing at particular beats.

4.8 Score Language
The manipulations described so far can be controlled via

a visual interface. Even finer control over the synthesis can
be obtained through the use of a score language. The au-
dio programming language ChucK (Wang and Cook 2003) is
used here both for specifying precise parameter values and for
controlling exactly how these values change over time. Since
ChucK allows the user to specify events and actions precisely
and concurrently in time, it is straightforward to write scores
to dynamically evolve a sound tapestry.

A ChucK virtual machine is attached to TAPESTREA,
which registers a set of API bindings with which ChucK pro-

grams can access and control sound templates and automate
tasks. Each script (called a shred) can be loaded as a sound
template and be played or put on timelines. Scripts can run
in parallel, synchronized to each other while controlling dif-
ferent parts of the synthesis. Also, scripting is an easy way
to add “traditional” sound synthesis algorithms and real-time
control via MIDI and Open Sound Control.

4.9 Other Controls
TAPESTREA also offers some generic synthesis and play-

back controls. The gain and stereo panning of templates can
be controlled individually, or randomly set by event loops
and mixed bags. A reverb effect adapted from STK (Cook
and Scavone 1999) can also be added to the final synthesized
sound.

The synthesis interface provides several ways to instan-
tiate new templates. Any existing template can be copied,
while deterministic and transient event templates can also be
saved as event loops. New timelines and mixed bags can be
freely created, and existing templates can be dragged onto or
off these as needed. Templates can also be deleted from the
library, provided they are not being used in a timeline or a
mixed bag. Finally, while sound is generally synthesized in
real-time, TAPESTREA offers the option of writing the syn-
thesized sound to file.

5 Discussion
TAPESTREA makes it possible to create a wide range of

musical tapestries. We describe one example recomposition
here. The spectrogram (Figure 11) represents a 5 minute im-
provised piece called Etude pour un Enfant Seul (Study for
a Child Alone). The source sound templates include the fol-
lowing: baby’s cry (1.5 sec; sinusoidal: 5 tracks), a clock
chime (7 sec, sinusoidal: 25 tracks), glass breaking (.5 sec,
sinusoidal: 4 tracks), car horn (.5 sec: sinusoidal: 10 tracks),
bird chirp (.5 sec, sinusoidal: 4 tracks), firework pop (.2 sec,
transient), boom (.4 sec, transient), bang (.3 sec, transient).
These were extracted from BBC sound recordings. (Addi-
tional templates, including an ocean background with bird
chirps removed, were extracted but not used here.)

We highlight some areas of interest in the recomposition
(denoted by numbered diamonds in Figure 11). In area (1)
are time/frequency-warped instances of the baby (7x time-
stretch, 0.5x frequency-scaled), car horns (6x time, 0.2x and
0.28x freq), and glass (4x time, 0.5x freq). The percussion in-
volving the pop/boom/bang templates begins around (2) and
is dynamically coordinated by scripts. In (3), the percussion
develops, punctuated by a solitary glass breaking sound. At
(4), greatly modified bird chirps (.15x time; 0.4x freq) fade



1 2

3

4

5

6

Figure 11: Example of a soundscape recomposition. Dia-
monds represent areas of significant shift in the piece.

in as part of a periodic loop, which is so dense that chirps are
triggered at audio rates, forming a rich tone. As time-stretch,
frequency-scale, and density are modified, the tone gradually
morphs into a flock of birds and back. Combined with fur-
ther modifications to periodicity and randomness, the flock
reaches its peak at (5), modeling the sound of more than 30
birds spread out in time, frequency, volume, and pan–all from
a single bird chirp template. The flock is then manipulated to
sparser texture, and the child returns at (6) with three longer
cries (baby cry; 9x time, 0.4x freq).

While this example makes good use of TAPESTREA, it is
equally possible to create completely differently styled com-
positions using the same tool and even the same initial sounds.

6 Conclusion
TAPESTREA is a technique and system for “re-composing”

recorded sounds by separating them into unique components
and weaving these components into musical tapestries. The
technique is applicable to musique concrète, soundscape com-
position and beyond, while the system combines algorithms
and interfaces for implementing the concepts. Key contribu-
tions include: (1) an approach for recomposing natural sounds,
defining semantically clear sound template types linked to
specific processing techniques, (2) a system for extracting
selected sound components intro reusable templates, and for
transforming and synthesizing these, (3) a class of user inter-
faces aimed to facilitate the process.

Creating musical tapestries with TAPESTREA is truly a
multidimensional process. The interface simultaneously pro-
vides visual and audio information, while the system provides
the means to interactively extract sound components, trans-
form them radically while maintaining salient features, model
them individually or in groups, and synthesize the final multi-
level “recomposition” in any number of ways, ranging from a
pre-set score to dynamically in real-time. Even with a modest
set of original sounds, there is no end to the variety of musical
tapestries one might weave.

http://taps.cs.princeton.edu/

References
Bello, J. P., L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and

M. B. Sandler (2005). A tutorial on onset detection in music
signals. IEEE Transactions on Speech and Audio Process-
ing 13(5).

Cook, P. R. and G. P. Scavone (1999). The Synthesis ToolKit
(STK). In Proceedings of the International Computer Music
Conference. International Computer Music Association.

Dhomont, F. (1995). Acousmatic update. Contact! 8(2).
Dolson, M. B. (1986). The phase vocoder: A tutorial. Computer

Music Journal 10(4), 14–27.
Dubnov, S., Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and

M. Werman (2002). Synthesizing sound textures through
wavelet tree learning. IEEE Computer Graphics and Appli-
cations 22(4).

Ellis, D. P. W. (1994). A computer implementation of psychoa-
coustic grouping rules. In Proceedings of the 12th Interna-
tional Conference on Pattern Recognition.

Melih, K. and R. Gonzalez (2000). Source segmentation for
structured audio. In IEEE International Conference on Mul-
timedia and Expo (II), pp. 811–814.

Roads, C. (2002). Microsound. Cambridge: MIT Press.
Rudy, P. (2004). Spectromorphology hits hollywood: Black hawk

down–a case study. In Proceedings of the International Com-
puter Music Conference, pp. 658–663. International Com-
puter Music Association.

Schaeffer, P. (1950). Introduction à la musique concrète. La
Musique Mécanisée: Polyphonie 6, 30–52.

Schaeffer, P. (1952). À la Recherche d’une Musique Concrète.
Paris: Seuil.

Schafer, R. M. (1977). The Tuning of the World. New York:
Knopf.

Serra, X. (1989). A System for Sound Analysis/ Transformation/
Synthesis based on a Deterministic plus Stochastic Decom-
position. PhD thesis, Stanford University.

Truax, B. (1990). Composing with real-time granular sound. Per-
spectives of New Music 28(2).

Truax, B. (2002). Genres and techniques of soundscape compo-
sition as developed at Simon Fraser University. Organised
Sound 7(1), 5–14.

Verma, T. S. and T. H. Meng (1998). An analysis/synthesis
tool for transient signals that allows a flexible
sines+transients+noise model for audio. In Proceedings
of 1998 IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 12–15.

Wang, G. and P. R. Cook (2003). ChucK: A concurrent, on-the-
fly, audio programming language. In Proceedings of the In-
ternational Computer Music Conference, pp. 219–226. Inter-
national Computer Music Association.


