
DATA-DRIVEN RECOMPOSITION USING THE HIERARCHICAL
DIRICHLET PROCESS HIDDEN MARKOV MODEL

Matthew D. Hoffman†, Perry R. Cook†‡, David M. Blei†

Princeton University
†Dept. of Computer Science

‡Dept. of Music
35 Olden St.

Princeton, NJ, USA 08540

ABSTRACT

Hidden Markov Models (HMMs) have been widely used
in various audio analysis tasks such as speech recogni-
tion and genre classification. In this paper we show how
HMMs can be used to synthesize new audio clips of unlim-
ited length inspired by the temporal structure and percep-
tual content of a training recording or set of such record-
ings. We use Markov chain techniques similar to those
that have long been used to generate symbolic data such
as text and musical scores to instead generate sequences of
continuous audio feature data that can then be transformed
into audio using feature-based and concatenative synthesis
techniques. Additionally, we explore the use of the Hier-
archical Dirichlet Process HMM (HDP-HMM) for music,
which sidesteps some difficulties with traditional HMMs,
and extend the HDP-HMM to allow multiple song mod-
els to be trained simultaneously in a way that allows the
blending of different models to produce output that is a
hybrid of multiple input recordings.

1. INTRODUCTION

Generative probabilistic models, and in particular graphi-
cal models such as the hidden Markov model, have been
successfully used for numerous audio analysis problems
such as speech recognition, genre classification, source
separation, automatic transcription, etc. These models at-
tempt to explain input data by assuming that they were
generated by an underlying process with some set of pa-
rameters that can be inferred from the data. This is in con-
trast to discriminative learning techniques such as boost-
ing [13] or support vector machines [17], which try to
minimize generalization error while making as few as-
sumptions as possible. (For a good overview of graphical
models, see [10].)

An interesting property of generative models is that,
once trained, they can be used to synthesize new data.
In most domains, there is little demand for this kind of
artificial data, since the objective is to make predictions
about data from the real world. But musical data may be
an exception – many listeners care very little whether the
musical “data” they listen to are “artificial” or “natural.”

Indeed, it could be argued that most music qualifies as ar-
tificial data manipulated for aesthetic purposes, in contrast
to naturally occurring environmental sound.

In this paper we explore a novel application of the Hid-
den Markov Model (HMM) and its nonparametric cousin
the HDP-HMM to data-driven music generation. By train-
ing an HDP-HMM on a sequence of feature vectors ex-
tracted from sliding windows of a recorded song, gener-
ating a new sequence of feature vectors from the trained
model, and then using feature-based or concatenative syn-
thesis to transform the feature vectors into audio, we can
synthesize unlimited amounts of new audio based on a fi-
nite amount of training audio.

The rest of the paper is organized as follows. We be-
gin by reviewing some background on Markov chains,
HMMs, feature-based synthesis, and concatenative syn-
thesis. We then discuss the more recently developed hi-
erarchical Dirichlet process HMM, which is better suited
than the traditional HMM to the long and complex input
sequences produced by analyzing some musical audio. Fi-
nally, we present some experimental results that demon-
strate the viability of our approach and discuss directions
for future work.

2. THE MARKOV CHAIN

A first-order Markov chain is defined by a set of states,
the transition probabilities between those states, and the
probability of starting in each state. The transition matrix
contains a vector of probabilities for each state describing
how likely it is that the process will transition from that
state to each other state. For example, in the model in
figure 1, if at time t the model is in state A, at time t + 1
there is a 70% chance of being in state A, a 10% chance
of being in state B, and a 20% chance of being in state C.
The probability of generating the sequence ABAC would
be 0.024 = 0.3 · 0.1 · 0.4 · 0.2, that is, the probability of
starting in state A multiplied by the probabilities of the
three transitions AB, BA, and AC.

The assumption that the future state of a process de-
pends only on its single most recent state is often un-
reasonable. In such cases, it makes sense to take more
than one previous state into account using a higher-order



0.2

0.05

0.3

0.150.8

0.30.4

0.10.7

CBA

B

C

A
A

B C

0.1 0.8

0.20.4
0.15

0.3

0.7

0.3 0.05

B

C

A

0.3

0.4

0.3

Initial State
Probabilities

Transition
Probabilities

Figure 1. Initial state probabilities, transition matrix and
graphical representation of a simple first-order three-state
Markov chain.

BB

BA

AB

AA

0.2

0.4

0.1

0.3

Initial State
Probabilities

Transition
Probabilities

0.5 0.5

0.70.3

0.350.65

0.20.8

BA

BB

BA

AB

AA

P(AA) = 0.3

P(AAA) = 0.3 • 0.8 = 0.24

P(BAABA) = 0.4 • 0.3 • 0.2 • 0.65
= 0.0156

Figure 2. Initial state probabilities and transition matrix
of a second-order two-state Markov chain, as well as some
example sequences and their likelihoods.

Markov chain. Higher-order Markov chains can be de-
fined by making transition probabilities depend on the
last N states in addition to the most recent state. Figure
2 shows a simple second-order Markov chain’s starting
probabilities vector and transition matrix, as well as a few
example state sequences and their likelihoods.

Training Markov chains (of any order) from data is
fairly straightforward if state values are directly observ-
able, as they are for symbolic data such as text and musi-
cal scores. To obtain the Markov chain under which the
observed data are most likely to have occurred, one sim-
ply sets the transition probability vector from each state
(or sequence of N states for an order-N model) to match
the relative frequencies of each observed transition. For
example, in the sequence AABBABBA we find one AA
transition and two AB transitions, so the likelihood of go-
ing from A to A would be 1/3 and the likelihood of going
from A to B would be 2/3; there are two BA transitions
and two BB transitions, so the likelihood of going from
B to A would be 2/4 and the likelihood of going from B
to B would also be 2/4.

Once trained, Markov chains can be used to generate
new state sequences of arbitrary length that bear some
resemblance to the data on which they were trained, a
property that has been used to creative ends in interest-
ing ways. The poet Jeff Harrison has generated poems
using Markov chains trained on text documents (treating
each unique word as a state); a few Bell Labs researchers
trained a Markov chain on posts from the net.singles

A

B C

0.1 0.8

0.20.4

0.15

0.3

0.7

0.3 0.05

P(xt | zt = A)

xt

xt

P(xt | zt = B)

P(xt | zt = C)

xt

Figure 3. One perspective on the hidden Markov model.
Left: Graphical representation of transition probabilities
between the hidden statesA,B, andC. Right: Probability
density functions (PDFs) for the observed data given the
underlying state of the model xt is the observation at time
t, and zt is the underlying state label at time t.

Usenet group and posted the random posts it generated
back to the group under the punning pseudonym “Mark
V. Shaney.” 1 Markov chains have also been used since at
least the 1950’s to produce musical scores [12, 1].

3. HIDDEN MARKOV MODELS

Although simple Markov chains lend themselves well to
applications involving symbolic data, to model continu-
ous data such as feature vector sequences describing au-
dio we need to add another layer of complexity. The
hidden Markov model assumes that there is still a set of
states generating our data, and that the identity of each
successive state still depends only on the state(s) before
it, but now we cannot observe these states directly. In-
stead, each state is associated with an emission probability
density function (PDF) that generates our observed data.
Training HMMs is more complicated than training simple
Markov chains, and is usually done either by attempting
to maximize the likelihood of the training data (using the
Baum-Welch expectation maximization algorithm [11]) or
by placing priors on the HMM’s parameters and trying to
find parameters that maximize the posterior likelihood of
the data [6].

3.1. Higher-order HMMs

Although it is possible to define higher-order HMMs as
well as first-order HMMs, as the order grows even mod-
erately high the transition matrix grows exponentially and
becomes increasingly difficult to learn. A suitable work-
around for our purposes is to build higher-order Markov
models based on the state sequences obtained by train-
ing low-order HMMs. If we take these state sequences

1 Those interested in playing with letter-based Markov chain text gen-
eration can open a text document in GNU Emacs and type “<META>-x
dissociated-press.”



z1 z2 z3 ... zn

x1 x2 x3 xn...

Figure 4. Graphical model representation of a first-order
HMM. z1...n are the underlying states associated with the
n observations x1...n. The xi’s are shaded to show that
they are observed directly. Each observation xi is drawn
from the distribution associated with state zi, and there-
fore depends on zi. Each state zi depends on the previous
state zi−1.

as observed “true” data, then we can build Markov mod-
els of arbitrarily high order as described for symbolic data
above. This is much the same approach as that taken by
Casey [3] to build 2nd- to 8th-order lexemes for audio re-
trieval.

3.2. Generating new feature vector sequences

Once an HMM has been trained, it can be used to generate
new sequences of observations in much the same way as
a Markov chain with no hidden layer. First we generate a
sequence of state assignments, then for each time step we
draw an “observation” from the PDF associated with the
state for that time step.

For audio, we might train an HMM on a sequence
of vectors of 20 Mel-Frequency Cepstral Coefficients
(MFCCs) extracted from a recorded song, assuming that
each state generates a 20-dimensional MFCC vector from
its own multivariate normal distribution. The training pro-
cess estimates the initial state probability vector, transition
probability matrix, and the means and covariance matri-
ces associated with each state. These estimated parame-
ters describe a model that could have generated the song
on which we trained. Once the model is trained, we can
then generate a new sequence of MFCC vectors as de-
scribed above, and that sequence of MFCC vectors will
describe another “song” that could have been generated
by our model. This sequence of MFCC vectors is of lit-
tle interest, however, unless we can turn it into something
audible.

4. FEATURE-BASED AND CONCATENATIVE
SYNTHESIS

The question of how to use feature vectors describing
short windows of audio to drive sound synthesis has
received some attention. We will consider several ap-
proaches to bridging the gap between HMM-generated
state sequences and audio.

4.1. Feature-based synthesis

Some of the authors’ previous research has focused on the
problem of feature-based synthesis, which involves find-
ing ways of synthesizing audio characterized by a desired
vector of features. For some feature sets, efficient closed-
form solutions exist to this problem. The MFCC extrac-
tion process, for example, can be reversed step by step to
produce noisy audio with the appropriate broad spectral
character.

It is not necessarily as easy to reverse arbitrary feature
vectors consisting of multiple concatenated feature sets,
however. In such circumstances we resort to combinato-
rial optimization algorithms such as simulated annealing
or genetic algorithms to find synthesizer parameters that
will produce audio described by a feature vector as close
as possible to the desired feature vector. This optimization
is performed using the FeatSynth framework [8, 9].

4.2. Concatenative synthesis

Another approach, often referred to as concatenative syn-
thesis, attempts to find previously recorded grains of audio
that closely match the desired feature values [14]. These
short grains are retrieved from a large, efficiently indexed
database. This approach is potentially more flexible than
feature-based synthesis (since the database is not limited
to synthetic sounds) and can have much less computa-
tional overhead than repeatedly synthesizing and testing
new short audio segments. However, it requires that a
sufficiently large database be compiled, analyzed, and in-
dexed ahead of time, and leaves no recourse if no clips
described by an adequately similar feature vector are in
the database.

4.3. Cluster mosaicing

We also consider another concatenative approach, this one
leveraging information that comes directly out of train-
ing the HMM. Assuming that we still have the audio
from which the feature vector sequence(s) used to train
the HMM were extracted, we can use the maximum-
likelihood state sequence obtained using the Viterbi algo-
rithm during training to associate each window from the
training audio with a state of the HMM.

To generate audio for a new state sequence, for each
time step t we can simply choose a window uniformly at
random from those windows whose state labelling is the
same as the current state zt, add it to the end of the current
audio stream (with appropriate crossfading), and move on
to the next time step t + 1. This is in lieu of drawing
from the emission density associated with zt. This den-
sity should nonetheless be reasonably well approximated,
since the empirical distribution of observations is what the
emission density is supposed to be modelling in the first
place.

Note that the database of windows available to this
technique can be expanded beyond those provided by the
audio used for training. The Viterbi algorithm can also be



used to provide maximum-likelihood labellings for new
audio recordings, and each window of a new recording
can be associated with its appropriate state. Doing so
does, however, make it more likely that the empirical dis-
tribution of available windows for each state will become
skewed. In this case, it may be best to actually draw a
feature vector from the emission density and choose the
cluster member with the smallest Euclidean distance, or
to use some other heuristic.

Elements of this approach resemble the audio oracle,
which deterministically creates a Markov chain in which
each window of audio is a state [4]. Another approach
suggested by Casey also used HMMs to cluster windows
of audio, with a focus on indexing large databases for au-
dio mosaicing [3].

5. THE HDP-HMM

When using traditional HMMs one must decide ahead of
time how many states are necessary to capture the com-
plexity of one’s data. Choosing too few states results
in an inadequately rich model, while choosing too many
may result in overfitting or difficulties in training. Re-
cent research in Dirichlet Process (DP) modelling has re-
sulted in a nonparametric version of the HMM that can
make a principled choice of how many states it needs
based on the complexity of its training data. This model,
the Hierarchical Dirichlet Process Hidden Markov Model
(HDP-HMM) exploits the structure of the Hierarchical DP
(HDP) developed by Teh et al. [16], and was extended by
Fox et al. [5]. The HDP-HMM consists of a theoretically
infinite number of states, only a few of which have a like-
lihood significantly greater than zero of being visited. A
cursory overview of this model follows, but for details on
training methods please refer to Fox et al.’s paper.

5.1. The basic model

In the standard generative HDP-HMM model, an HDP-
HMM is created by first drawing a vector beta of in-
finite length (whose elements nonetheless sum to one)
from Sethuraman’s stick-breaking construction [15] with
hyperparameter γ, denoted GEM(γ). This vector β de-
scribes the relative frequencies with which states are ex-
pected to be visited for the whole model. It defines a
multinomial distribution over states, and for notational
convenience we treat the vector and the distribution it de-
fines interchangeably. Next, for each state j in [1 . . .∞]
a vector πj (also summing to one) is drawn from a DP
with hyperparameter α and base distribution β. This vec-
tor πj defines a multinomial distribution over transitions
from state j, that is, it is the transition vector associated
with state j. The higher the value of α, the less likely it
becomes that πj will deviate significantly from β. Next,
parameters θk for the emission distributions F (θ) asso-
ciated with each state k are drawn from their previously
specified prior distributions H . This is summarized be-
low:

β ∼ GEM(γ)
πj ∼ DP(α, β) (1)

θk ∼ H

Then, it is assumed that such a model generated our
training data Y = y1...N , as well as a state sequence Z =
z1...N . Assume for simplicity that the starting state z1 is
drawn from β. Then zt+1 was drawn from πzt for t =
1 . . . N − 1. Once each zt was drawn, each observation yt

(our actual data) was drawn from F (θzt
). To summarize:

zt ∼ πzt−1 (2)
yt ∼ F (θzt)

Given Y , and having defined H and chosen values for
α and γ, we can use the Gibbs sampling method described
by Teh et al. to infer the state assignments Z. Given Z,
we can then infer those parts of β, π, and θ that we care
about – that is, those associated with states that are asso-
ciated with observations. There are still theoretically an
infinite number of states in the model, but those states that
are not associated with observations can be dealt with in
the aggregate. This algorithm requires that H be a conju-
gate prior distribution on F (θ), however, which can be a
problematic restriction.

Another Gibbs sampling method can be used to train
the HDP-HMM, which Fox et al. call the blocked-z Gibbs
sampler. This method operates on a finite approximation
to the full HDP-HMM that uses L states instead of an in-
finite number of states, and converges to the HDP-HMM
as L→∞:

β ∼ Dir(γ/L, . . . , γ/L)
πj ∼ Dir(αβ1, . . . , αβL); θk ∼ H (3)

zt ∼ πzt−1 ; yt ∼ F (θzt)

The blocked-z Gibbs sampler fully instantiates and
samples β, π, z, and θ for this finite model, and can there-
fore exploit the relatively simple structure of the HMM to
sample Z jointly using a variant of the forward-backward
procedure [5], which may speed convergence. Another
important advantage of this algorithm is that it does not
require that H be a conjugate prior. Note that although
the number of states L to use when training the model is
specified, as long as L is sufficiently large not all L states
will be used, and as L becomes very large the model con-
verges to the infinite HDP-HMM described previously, in
which only a finite number of states are actually used. In
practice, setting L to be more than 2–4 times the number
of states that the model winds up using does not seem to
significantly alter results.

Although the hyperparameters α and γ are assumed to
be given, we can place vague prior distributions (we used
Beta(1, 0.005)) on each of them and let the model choose
them as well [5]. If we allow the model to control α and



γ then the only parameters we need to specify are those
associated with the priors over emission densities.

5.2. Priors on emission density parameters

We choose our prior densities to require only two param-
eters to be manually set – one controlling the expected
size of each cluster and one controlling how much to al-
low cluster sizes to vary. If we specify a preference for
smaller clusters, then the training algorithm will respond
by allocating more clusters and therefore a richer model
to capture the complexity of the data. The stronger a pref-
erence we specify for clusters of a particular size, the less
variation there will be in cluster size.

Our emission distributions are multivariate normal.
The conjugate prior distribution for the mean and covari-
ance parameters of a multivariate normal distribution is
the normal-inverse-Wishart [7]. Determining the posterior
of this distribution based on observed samples is computa-
tionally straightforward. But the normal-inverse-Wishart
distribution makes it difficult to specify different levels
of prior certainty about the shape of the distribution (as
captured by the correlations between dimensions) and its
spread (the standard deviations of the dimensions). Ideally
we would like to be able to express the sort of preferences
with respect to spread described in the previous paragraph
while letting the clusters take any shape the data suggest.

Mathematically, we accomplish this by factorizing the
multivariate normal distribution’s covariance matrix pa-
rameter Σ into Σ = SRS, where S is a square matrix
with the standard deviation for each dimension on its di-
agonal and zeros elsewhere and R is a square symmetric
positive definite correlation matrix where Ri,j is the cor-
relation between dimensions i and j. For each dimension
we place an independent scaled inverse-χ2(ν, σ2) distri-
bution on the square of its standard deviation (i.e. its
variance), where σ2 is our desired or expected average
cluster variance in that dimension and ν is a degrees of
freedom parameter that controls how much weight to give
σ2. Depending on the data, it may make sense to spec-
ify different values of σ2 for each dimension. One way
to avoid having to do this manually is to look at the em-
pirical standard deviations of the entire sequence (or the
average standard deviations of smaller clusters) of feature
vectors, scale them all by the same constant, and square
them. This only requires that one parameter be specified
a priori, while hopefully keeping the proportions of the
emission distributions reasonable with respect to the data.

Unfortunately, few off-the-shelf distributions over sym-
metric positive definite matrices exist, so we use a variant
on a parameter expansion technique described by Boscar-
din and Zhang [2]. We define an auxiliary diagonal stan-
dard deviation matrixQ and place a vague inverse-Wishart
prior I-W(I, d+1) on the covariance matrixQRQ, where
d is the dimensionality of the feature vectors and I is the
d-dimensional identity matrix. The marginal prior distri-
bution of each correlation Ri, j under this distribution is
uniform from -1 to 1 [7]. Although we no longer have
a conjugate prior for the covariance matrix, we can use

Gibbs sampling and the Metropolis-Hastings algorithm to
sample from the posterior distributions of S, R, and Q,
and therefore from the posterior distribution of Σ = SRS.

To simplify computation, we choose a conjugate mul-
tivariate normal prior on the mean of our emission distri-
bution [7].

5.3. Adding another layer of hierarchy

We add another layer of hierarchy to the standard HDP-
HMM in order to allow ourselves to train models for mul-
tiple songs simultaneously in a way that allows these mod-
els to share a common vocabulary of states. Sharing state
vocabularies across models allows us to use the technique
described in section 3.1 to build Markov chains that com-
bine the transition characteristics of multiple songs.

The new generative model is:

β0 ∼ GEM(δ)
βi ∼ DP(γ, β0) (4)

πi,j ∼ DP(α, βi); zi,t ∼ πzt−1

θk ∼ H; yi,t ∼ F (θzI,t
)

Where each song i has its own song-level state like-
lihood vector βi, transition matrix πi, state sequence Zi,
and observation sequence Yi, and the emission density pa-
rameters θ are shared across all models. β0 is an infinitely
long vector that defines the global likelihood of being in a
particular state across all songs, while each βi defines the
likelihood of being in a particular state for song i. The hy-
perparameter δ determines how much each βi is likely to
deviate from β0, much like γ determines how much each
πi,j is likely to deviate from each βi. The same vague
prior can be placed on δ as on α and γ, so it can also be
inferred during training.

6. EXPERIMENTS

We ran experiments on the dance-pop song
“Chewing Gum” by the Norwegian recording
artist Annie. The song was selected because of the
prominence of its strong, repeating beat. Sound exam-
ples and a link to a stream of the original song are at:
http://www.cs.princeton.edu/∼mdhoffma/icmc2008. All
algorithms were implemented in MATLAB and C++.

We began by breaking the song into non-overlapping
1024-sample windows and extracting each window’s RMS
power and first 20 Log-Frequency Cepstral Coefficients
(LFCCs) [3], resulting in a 21-dimensional feature vec-
tor for each window, 10,086 feature vectors in all. We
chose these features because they are simple to compute
and, more importantly, simple and efficient to reverse. In
the future, we plan on experimenting more with other fea-
tures, particularly chroma vectors.

As a preprocessing stage, we ran Principal Component
Analysis (PCA) on our 10,086 feature vectors and pro-
jected each onto the first 21 principal components. This
ensures that no correlations exist between the 21 dimen-
sions of the data we are trying to model, which can be



 

 

Figure 5. Top: spectrogram of a clip from “Chewing
Gum.” Bottom: spectrogram of resynthesized clip.

a desirable property. We transform our synthetic feature
vectors back to their original basis before transforming
them into audio. We then used Fox’s blocked-z Gibbs
sampler with L = 175 to train our model until the log-
probability of the data under the model no longer in-
creased. We chose the parameters for our priors as fol-
lows.

For the σ2 parameters to the scaled-inverse-χ2 priors
on each variance, we chose the average variance in each
respective dimension of 100 clusters of 70 points each.
The clusters were selected at random by first choosing a
random point and then finding the 70 closest points to that
first point under the L2 (Euclidean) norm. The goal was
to push the model to expect to find clusters with a median
size of about 70 points. We chose 50 for the degrees of
freedom parameter to each scaled-inverse-χ2 prior.

The mean and covariance parameters to the prior on the
emission distribution’s mean were chosen as the mean and
the covariance matrix of the entire data set.

6.1. Results

Figure 5 shows a spectrogram of a roughly 10-second clip
from “Chewing Gum.” Below it is a spectrogram of a
resynthesized version of the same clip generated by ex-
tracting the feature set described above and then converted
the result back into audio. Notice that all fine detail in the
spectrum has been washed out. This is because cepstral
coefficients are designed to smooth away such fine detail.

 

 

 

Figure 6. Spectrograms of audio produced by (from top
to bottom) a 1st-order Markov chain, 4th-order Markov
chain, and an 8th-order Markov chain.

Figure 6 compares spectrograms of 10-second audio
clips generated by 1st, 4th, and 8th-order Markov chains
created from our trained model. We manually reduced the
variance of each emission density by 50% when generat-
ing new feature sequences to achieve a less noisy result.
As information about more previous states is included, the
model can produce audio with more structure, but also
finds itself more constrained. If the order of the model N
becomes too high, there will be almost no state sequences
of length N that are not unique, and the model will be
forced to reproduce the original state sequence.

In all, the model took about 15 iterations and 2300 sec-
onds to converge on a MacBook Pro laptop with a 2.0 GHz
Core Duo processor and 2 GB of RAM. Figure 7 plots the
log-probability of the data under the model, the number
of states the model used, and the entropy of the histogram



Lo
g-

Pr
ob

ab
ilit

y

En
tro

py

Nu
m

be
r o

f S
ta

te
s 

in
 M

od
el

Iterations IterationsIterations

Figure 7. Log-probability of the data (left), number of
states used (middle), and entropy of state histogram (right)
at each iteration.

of states at each iteration (another measure of model com-
plexity). Although the likelihood of the data converged
fairly quickly, it took somewhat longer for the complexity
of the model to stabilize.

7. DISCUSSION

Although our early results are promising, there remains
much room for further exploration of generative mod-
elling in conjunction with feature-driven synthesis meth-
ods. In the future we hope to extend the techniques
discussed in this paper to include a more sophisticated
treatment of rhythm, possibly using switching HMMs to
model the transitions between measures and beats in a
more hierarchical fashion. We also intend to apply these
techniques to more pitch-savvy feature sets.

8. REFERENCES

[1] Ames, C. “The Markov process as a com-
positional model: a survey and tutorial,” in
Leonardo 22(2): pp. 175-188, 1989.

[2] Boscardin, W.J. and Zhang, X. “Modeling the
covariance and correlation matrix of repeated
measures,” in Applied Bayesian Modeling and
Causal Inference from Incomplete Data Per-
spectives, Gelman, A. and Meng, X. eds., Wi-
ley, Hoboken, 2004.

[3] Casey, M. “Acoustic Lexemes for Organizing
Internet Audio,” in Contemporary Music Re-
view, Vol. 24, No. 6, pp. 489-508, Dec. 2005.

[4] Dubnov, S., Assayag, G. and Cont, A. “Au-
dio Oracle: a new algorithm for fast learning
of audio structures,” Proceedings of the Inter-
national Computer Music Conference, Copen-
hagen, Denmark, 2007.

[5] Fox, E., Sudderth, E., Jordan, M., and Will-
sky, A. “Developing a tempered HDP-HMM
for systems with state persistence,” Technical
report, MIT Laboratory for Information and
Decision Systems, 2007.

[6] Gauvain, J. and Lee, C. “MAP estimation of
continuous density HMM: theory and applica-
tions,” Proceedings of the workshop on Speech
and Natural Language, Harriman, New York,
USA, 1992.

[7] Gelman, A., Carlin, J., Stern, H., and Rubin,
D. Bayesian Data Analysis. CRC Press, Boca
Raton, 2003.

[8] Hoffman, M., and Cook, P.R. “Feature-based
synthesis: Mapping from Acoustic and Per-
ceptual Features to Synthesis Parameters,”
Proceedings of the International Computer
Music Conference, New Orleans, USA, 2006.

[9] Hoffman, M., and Cook, P.R. “The FeatSynth
framework for feature-based synthesis: design
and applications,” Proceedings of the Interna-
tional Computer Music Conference, Copen-
hagen, Denmark, 2007.

[10] Jordan, M. “Graphical Models,” in Statistical
Science, Vol. 19, No. 1, pp. 140-155, 2004.

[11] Rabiner, L. “A tutorial on hidden Markov
models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257-286, 1989.

[12] Roads, C. The Computer Music Tutorial. MIT
Press, Cambridge, 1996.

[13] Schapire, R. “A brief introduction to boost-
ing,” Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelli-
gence, 1999.

[14] Schwarz, D. “An Overview of Current Re-
search in Concatenative Sound Synthesis,”
Proceedings of the International Computer
Music Conference, Barcelona, Spain, 2005.

[15] Sethuraman, J. “A constructive definition of
Dirichlet priors,” in Statistica Sinica, 4:639-
650, 1994.

[16] Teh, Y., Jordan, M., Beal, M., and Blei, D.
“Hierarchical Dirichlet processes,” in Jour-
nal of the American Statistical Association,
101(476):1566-1581, 2007.

[17] Vapnik, V.N. The Nature of Statistical Learn-
ing Theory. Springer, New York, 2000.


