ChuckK, On-the-fly Programming, and the Audicle

// patch
noise n => biquad f => dac
sampout s => dac;

1

trigger2

Ge Wang, Perry R. Cook, and Ananya Misra
Princeton University*

new shred

N

// spork shred 100::ms apart
now + 800::ms -> time later;
(now < later)

spork(trigger);
100::ms +=> now;

filter_control k Y

/I do until sometime

(now > sometime)
{

// filter sweep
next_v() -> f.freq;
50::ms +=> now;

while(1)
1::second +=> now;

chuck vm status:

shred 'foo' : active : 3m5s
shred 'bar' : suspended : 10m20s

: QOO

test compile spork

chuck vm %> sporking shred ‘'foo'

|
8 .

computer

Figure 1: Elements in the ChucK programming language and the Audicle programming environment.

1 Introduction

ChucK, On-the-fly programming, and the Audicle are different
parts of a new programming system and paradigm for real-time
audio synthesis and multimedia. ChucK is the programming lan-
guage; on-the-fly programming is the technique and aesthetic of
writing/editing code during runtime; the Audicle is the context-
sensitive graphical programming environment. Together, they form
a theoretical and practical framework for writing and experimenting
with complex audio/multimedia programs that (1) have powerful
control over time and concurrency and (2) can be created on-the-
fly. (see also: http://chuck.cs.princeton.edu/)

2 ChucK + Audicle

ChucK is an ongoing, open-source research experiment in design-
ing a computer music language from the “ground up”. A main focus
of the design was the precise programmability of time and concur-
rency with high level of readability. System throughput remains
an important consideration, especially for real-time audio, but was
not our top priority. The language is designed to provide maximal
control for the programmer. Design goals are as follows.

o Flexibility: allow the programmer to naturally specify both high
and low level operations in time.

e Concurrency: allow the programmer to craft and precisely syn-
chronize parallel modules that share both data and time.

e Readability: provide/maintain a strong correspondence between
code structure and timing.

*e-mail: {gewang, prc, amisra} @cs.princeton.edu

o A do-it-yourself language: combine the expressiveness of lower-
level languages and the ease of high-level computer music
languages; support high-level musical concepts, precise low-
level timing, and the creation of “white-box™ signal-processing
elements—all directly in the language.

e On-the-fly: allow programs to be edited as they run.

ChucK enables time itself to be computable (as a first-class cit-
izen of the language), and allows a program to be “self-aware” in
the sense that it always knows where it is in time and can control its
own progress over time. Furthermore, many processes can share a
central notion of time, making it possible to naturally reason about
parallel code based on time.

However, control over time alone is not enough—we also need
concurrency to expressively capture parallelism. Fortunately, the
timing mechanism lends itself directly to a concurrent program-
ming model. Multiple processes (called shreds), each advancing
time in its own manner, can be synchronized and serialized directly
from the timing information. Thus arises our concept of a strongly-
timed language, in which processes have precise control over their
own timing and synchronization.

Using this timing/concurrency model, on-the-fly programming
can be carried out by exchanging time-aware code segments. To
further facilitate this, the Audicle provides a graphical environ-
ment in which to write ChucK programs on-the-fly, and to visu-
alize the programs in terms of code, audio synthesis, concurrency,
and timing—all in real-time. Together, ChucK, on-the-fly program-
ming, and the Audicle form a system and workbench for experi-
menting with sound synthesis for composition and performance.

