
Building Collaborative Graphical interFaces in the Audicle
Ge W ang

Department of Computer Science,
Princeton University

35 Olden St.
Princeton NJ 08540 USA

gewang@cs.princeton.edu

Ananya Misra
Department of Computer Science,

Princeton University
35 Olden St.

Princeton NJ 08540 USA

amisra@cs.princeton.edu

Perry R. Cook
Department of Computer Science

(also Music),
Princeton University

35 Olden St.
Princeton NJ 08540 USA
prc@cs.princeton.edu

Figure 0. Multiple Bouncing Spheres interfaces visualized from a centralized viewpoint. Each human
player manipulates spheres over a portion of the squares. The ensemble is synchronized by computer.

ABSTRACT
Emergence is the formation of complex patterns from
simpler rules or systems. This paper motivates and
describes new graphical interfaces for controlling sound
designed for strongly-timed, collaborative computer
music ensembles. While the interfaces are themselves
minimal and often limiting, the overall collaboration can
produce results novel beyond the simple sum of the
components – leveraging the very uniqueness of an
ensemble: its strength in numbers. The interfaces are
human-controlled and machine-synchronized across a
dozen or more computers. Group control, as well as sound
synthesis mapping at each endpoint, can be programmed
quickly and even on-the-fly, providing a second channel
of real-time control. We show examples of these interfaces
as interchangeable plug-ins for the Audicle environment,
and also document how they are used in a laptop ensemble.

Keywords
Graphical interfaces, collaborative performance,
networking, computer music ensemble, emergence,
visualization, education.

1. INTRODUCTION
Emergence is the formation of complex patterns from
simpler rules or systems. In this paper, we explore
minimal, easy-to-learn graphical interfaces that can, as a
group, form sound and music that is more interesting and
complex than that made by any single component, in a
tightly coupled and collaborative environment.

This was motivated by the desire to provide new interfaces
for new computer music performance ensembles such as
PLOrk: Princeton Laptop Orchestra, currently being
developed and instructed by Dan Trueman, Perry Cook,
Scott Smallwood, and Ge Wang. In addition to more self-
contained, sophisticated instruments, we wished to
provide the ensemble with interfaces that require minimal
setup and learning time, and with which the participants
can immediately and directly influence the overall sound
as part of the group. Furthermore, we wanted the option of
tightly synchronizing all participating interfaces /
machines.

Given this motivation, the research goals are defined as
follows.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Nime’06, June 5-7, 2006, Paris, France.
Copyright remains with the author(s).

The interfaces should be:

• simple enough to pick up and use, yet complex
enough to generate interesting music/sound as a
group

• amenable to collaboration in a tightly-timed
setting; for example, a server should be able to
synchronize all interfaces with desired musical
timing; collaboration is the unifying aspect of all the
interfaces we present.

• as direct and as immediate as possible

• as precise as possible, even at the cost of resolution

• easi ly programmable (i .e . mapped to
sound/graphics)

To implement the interfaces, we used the Audicle
programming environment [6,7] as the platform,
leveraging its existing framework for blending high-
performance graphics with precise real-time audio.
Extending the Audicle API (in C++), we were able to add
and experiment with new graphical interfaces as new
faces of the Audicle. We also added a mechanism for
accessing and controlling the interfaces directly using
ChucK [5], the language for which Audicle was built. In
this way, we can write ChucK code to control sound
synthesis using data from the graphical interfaces,
decoupling the interface from the sound synthesis.
Furthermore, ChucK makes it possible to change sound
synthesis and interface mapping on-the-fly.

Figure 1. A collaborative interface network model.

The interfaces are synchronized over a wireless local-
area network (Figure 1), using Open Sound Control [9].
One or more mothership host runs any application that
broadcasts messages and synchronization messages to
each of the end points. Our current mothership
programs are written in ChucK.

1. RELATED WORK
The various graphical interfaces developed in this
ongoing investigation derived mainly from three areas:
audio/visual interfaces (Figure 2), such as the Painterly
Interfaces created by Golan Levin [3] and musical video
games created by Toshio Iwai [2,10]; GUI-based
frameworks such as the MIDIGrid [1] and ixi software [4];
mainstream puzzle games, such as Chu-chu rocket,
Lemmings, and Domino Rally [11,12,13].

Figure 2. Audiovisual interfaces.

All of these works have significantly influenced and
inspired interfaces in this paper – directly (such as in the
case of the MIDIGrid) or aesthestically. The contribution
of our work is placing interfaces similar to these within a
tightly-timed synchronization framework, and finding
paradigms to leverage this new collaborative aspect.

Figure 3. Puzzle games.

1. INTERFACES
Some example interfaces designed for single-server
multiple-client setups are described below. As shown in
Figure 1, humans assert musical control at each client,
while the server centrally synchronizes all the clients.

1.1 Color Squares
In this interface (Figure 4), each client has an N x M grid
and a finite color palette. Every color can be mapped to a
separate event or to silence, with a potentially different
mapping for each client. The user at every client machine
selects a color using the mouse or the keys 1-9 and a-z (0
and es are reserved for the silent color), and applies it to
any number of squares on the grid.

Figure 4. Color Squares

The server program moves through the grid in any desired
manner, including sequential, random, or in any other
fashion, in any timing pattern as specified in code in the
server ChucK program. The client is aware of when a
particular grid element is activated and what color was last
placed on it, and can respond to this information in any
programmatic manner, such as by playing a sound
associated with the color of the currently activated grid
element. Sample ChucK code for the server and client sides
are presented here.

1.1 Spheres
Spheres (Figure 0) is a three-dimensional interface
extending the color squares metaphor. It consists of
spheres that bounce from a height, with or without energy
loss, and colored square covering the "ground". Each time
a sphere hits the ground, it can trigger an event based on
the color and mapping of the square it touches. Multiple
views of the space allow the user to control where a sphere
bounces as well as its starting height. The bouncing
location (or square) controls which event the sphere
triggers, while the height translates to how often i t
bounces and thus how often the triggered event i s
repeated.

1.1 Mouse Mania
The Mouse Mania interface draws from the Chu Chu
Rocket game described earlier. Each client or host has a
virtual entity or "mouse" and a grid that acts as a map for
the mouse to follow. Each grid element can have a user
specified color and shape. As in the Color Squares
interface, the color of a grid element can be mapped to an
event that is triggered when a mouse reaches it. In
addition, the grid element's shape can control the
subsequent movement of the mouse, including its
direction, speed, or special dance moves possibly
associated with repetition of the related musical event. A
mouse need not be confined to a single host; another
option is for the server to own many mice that run from
host to host, changing the spatial dynamics of the piece.

1.1 Dominotes
This interface uses the visual metaphor of dominoes to
control events being triggered in rapid succession. Each
user constructs domino rallies and connects sub-rallies to
a central launching station when they are ready to be
played. The launching station, at the discretion of the
server, pushes all adjacent or connected dominoes,
triggering a chain reaction. Each domino toppling, as well
as special items such as rockets in the dominoes' path, can
be mapped to any parameters or events at the discretion of
the client. Toppled dominoes can be made upright
automatically or manually by the users' selecting any
subset of their dominoes. Forks in a domino rally allow
each client's musical sequence to follow multiple paths in
parallel.

1.1 SaladTossers
This interface is based on the idea of musical "recipes" and
consists of salad ingredients, dressing, and a mixing bowl
for each client. Ingredients can map to musical events as
specified by the client. The user creates a salad by
inserting desired quantities of each ingredient into the
mixing bowl and tossing it. The tossing causes events to
be triggered repeatedly; events associated with ingredients
that make up a larger portion of the salad are triggered
more often and thus have greater density in the resulting
sound. As more ingredients are added to the salad, events
are triggered more often. Further, a variety of dressings are
available for adding to the mix, each dressing being
associated with a different filter or sound processing
effect. Finally, there is a "consume" option which
gradually empties out the contents of the bowl and thus
reduces the overall event density until there is silence.
This interface is expected to be especially useful for
creating textures where one may prefer to closely control
the density of events rather than specifying the exact times
at which events are triggered.

1.1 More
The above are some examples of simple interfaces that can
produce complex music over a network of collaborators. It
is possible to program more such graphical interfaces
using the open-source Audicle framework. In addition, the
mapping suggestions and time-based behavior described
above are optional for each graphical interface and can be
easily modified by changing the ChucK code on the client
and server sides. Thus, these interfaces are flexible on the
visual and auditory levels as well as in the interactions
between the two.

1. CASE STUDIES
The Color Squares interface was used in the debut concert
of PLOrk: Princeton Laptop Orchestra in a piece called
“Non-Specific Gamelan Taiko Fusion Band”. The setup
involved one conductor, one mothership laptop, one
inkjet printer (from which scores were printed during the
performance), and 15 laptop stations, each equipped with
powered hemispherical speakers and running Color
Squares. The stations were divided into four groups, each
with a different sound synthesis mapping.

Figure 5. Example score over time.

During the performance (Figure 6), the conductor held up
colored print-outs specifying differing densities and
timbres (colors) to different groups over time. The score
(Figure 5) shows some typical textures and transitions.
The study successful demonstrated that the approach
fulfilled its major goals. The students learned the interface
in seconds and were able to immediately affect change in
controllable ways. The resulting performance can be heard
at:

http://plork.cs.princeton.edu/listen/debut/nsgamelan.mp3

Figure 6. PLOrk in action.

2. CONCLUSION AND FUTURE WORK
We have demonstrated a variety of graphical interfaces for
creating music collaboratively. The simplicity of these
interfaces allows new users to grasp the rules quickly and
start making music right away. At the same time, the strong
central synchronization facilitates collaboration, giving
rise to more complex pieces than would be expected from
the basic rules for the clients or server. Thus, these
interfaces produce a form of emergent music. As our
investigating continues, we hope to expand on this
beginning exploration into collaborative graphical
interfaces.

3. ACKNOWLEDGMENTS
We would like to thank Dan Trueman, Scott Smallwood, all
the member of PLOrk, Philip Davidson, and Joshua
Podolak for their invaluable help and ideas.

4. REFERENCES
[1] Hunt, A. and R. Kirk. “MidiGrid: Past, Present, and

Future” In Proceedings of the International
Conferences on New Interfaces for Musical
Expression. May 2003.

[2] Iwai, T. “Images, Music, and Interactivity - the Trace of
Media Art” Keynote Speech. International Computer
Music Conference. June 2004.

[3] Levin, G. Painterly Interfaces for Audiovisual
Performance. M.S. Thesis, MIT Media Laboratory,
August 2000.

[4] Magnusson, T. “ixi software: The Interface as
Instrument” In Proceedings of International
Conference on New Interfaces for Musical
Expression. June 2005.

[5] Misra, A., G. Wang, and P. R. Cook. “SndTools: Real-
time Audio DSP and 3D Visualization” In
Proceedings of the 2005 International Computer
Music Conference. September 2005.

[6] Wang, G. and P. R. Cook. “The Audicle: A Context-
Sensit ive, On-the-fly Audio Programming
Envi ron /menta l i ty” In Proceedings of the
International Computer Music Conference .
Novermber 2004.

[7] Wang, G., A. Misra, P. Davidson, and P. R. Cook. “Co-
Audicle: A Collaborative Audio Programming Space”
In Proceedings of the International Computer Music
Conference. September 2005.

[8] Wang, G. and P. R. Cook. “ChucK: A Concurrent and
On-the-fly Audio Programming Language” In
Proceedings of the International Computer Music
Conference. October 2003.

[9] Wright, M. and A. Freed. “Open Sound Control: A
New Protocol for Communicating with Sound
Synthesizers” In Proceedings of the International
Computer Music Conference. September 1997.

[10] http://electroplankton.nintendods.com/

[11] http://www.pressmantoy.com/

[12] http://www.vintage-sierra.com/puzzle/tim.html

[13] http://en.wikipedia.org/wiki/ChuChu_Rocket

