
In Proceedings of the 2004 International Computer Music Conference

The Audicle: A Context-Sensitive, On-the-fly
Audio Programming Environ/mentality

Ge Wang and †Perry R. Cook
Computer Science Department, †(Also Music)

Princeton University

{gewang,prc}@cs.princeton.edu

Figure 0. Some things associated with an Audicle.

Abstract
Many software environments have been developed for
computer music. Programming environments typically provide
constructs to implement synthesis or musical algorithms,
whereas runtime environments allow performers to exert
parametric control over their programs onstage, in real-time.
We present a new type of audio programming environment that
integrates the programmability of the development environment
with elements of the runtime environment. The result, called
the Audicle, is a novel integration of a concurrent “smart”
editor, compiler, virtual machine, and debugger, all running in
the same address space, sharing data, and working together at
runtime. We believe this augmentation has the potential to
fundamentally enhance the way we write and visualize audio
programs both offline and on-the-fly.

In this paper, we examine existing programming and runtime
environments, present the ideas behind the Audicle, and
demonstrate its features and properties. Our model of the
Audicle is integrated with the ChucK programming language
and inherits many of its fundamental properties, including:
decoupling of data-flow and time, concurrency, and modularity
for on-the-fly programming. We discuss the main components
of the Audicle, and show that it not only provides a useful class
of programming tools for real-time composition and
performances, but also motivates a new type of on-the-fly
programming aesthetic – one of visualizing the audio
programming process.

1. Introduction
Software environments play a pivotal role in the creation and

performance of computer music. Programming environments
provide the setting to design/implement synthesis and

compositional algorithms. Runtime environments realize and
render these algorithms into sound (and images), and allow
performers to interact with the system, often in real-time. In
this work, we present a new type of audio programming
environment, called the Audicle, which combines the
programmability of programming environments and the
immediate feedback of runtime environments. The Audicle is
an integration of "smart" concurrent editor, compiler, virtual
machine, and visualizations – all operating in a single on-the-
fly environment. This has the potential to fundamentally
enhance the way we write, visualize, and interact with audio
programs.

Figure 1. Completing the loop. The Audicle bridges
runtime and development by integrating elements of both.

The Audicle differs from traditional environments in the
following ways. Conceptually, it brings the editor and
compiler into the runtime environment (Figure 1), which
allows a fundamentally greater level of interactivity in the
programming process. Secondly, it is tightly coupled with a
programming language – in this case, ChucK, a concurrent and
on-the-fly synthesis language (Wang and Cook, 2003). This
coupling is advantageous because it leverages and enhances the

In Proceedings of the 2004 International Computer Music Conference

desirable ChucK properties of precise timing and concurrency.
This is different from systems like Max and Pure Data, where
the environment essentially is the language. ChucK is fully
functional by itself – the Audicle aims to complement the
language and enhances the ability to rapidly develop and
visualize programs both offline and on-the-fly. Thirdly, the
Audicle embodies the aesthetic and mentality of visualizing the
process of programming and the state of the runtime system.

This paper is organized as follows. In Section 2, we present
the goals of the Audicle and also examine the background of
existing programming and runtime environments (both audio
and non-audio). The Audicle’s runtime compiler, virtual
machine, and much of the concurrent editor semantics are
based on our earlier work with ChucK and on-the-fly
programming. In Section 3, we overview the key features and
properties of ChucK, as well as the challenges of on-the-fly
programming as they pertain to the Audicle. In Section 4, we
present the design of the Audicle, introduce the Audicube, and
discuss its properties and implementation. In Section 5, we
address how these ideas motivate a new kind of on-the-fly
programming aesthetic, and discuss future work.

2. Background
2.1 Goals of the Audicle

A simple but important question to answer is: why
investigate the programming environment? We believe that the
programming language and the environment it is used with
fundamentally influence how we think about and write
programs. ChucK provided a new way of reasoning about
time, data-flow, and concurrency in a programming language.
The Audicle is designed to enhance and complement these
features, and make them more accessible, faster, and perhaps
more enjoyable to use.

Context-sensitive. The goal of the editor is to allow
concurrent code to be clearly entered and represented. Also, it
should have knowledge of the deep structure of the program
and runtime information (such as program state and profiling
hints) – and use this information to aid the programmer to more
easily write code. We call this a concurrent, “smart” editor.

On-the-fly. On-the-fly programming is the practice of coding
at runtime – while the program is running. The Audicle aims to
complete the development/runtime loop by bringing the editor
and compiler to the virtual machine, and vice versa. By
making them accessible to each other, new and faster interfaces
and paradigms for runtime audio programming may emerge.

Different views. Having different views of the same program
can be very useful to writing and fine-tuning code. The
Audicle should allow a program to be viewed and manipulated
in many ways: as concurrent code, syntactic/semantic
representations, or timing and synchronizations. Additionally,
the Audicle is an observation or visualization of the process of
on-the-fly programming, giving it the potential to be a useful,
general-purpose performance or educational tool.

Minimal. The Audicle provides a minimal interface, and rely
on the underlying interactions of the language and the multiple
viewing models to achieve a great deal of expressiveness and
power, without imposing a particular programming style.

2.2 Existing Environments
An environment, in the context of this investigation, is

defined as a comprehensive software setting in which
programming and/or runtime control is carried out and/or
facilitated. There have been many environments developed for
programming, performance, and composition, as well as
several environments not specifically intended for audio and
music that are also useful to examine.

Programming environments provide a setting to write and
edit programs at development time, and often include a
compiler and debugger. Examples include graphical
environments such as Max (Puckette, 1991) and Pure Data
(Puckette, 1996), integrated development environments (IDE’s)
for text-based languages such as Java, C/C++, Nyquist
(Dannenberg, 1997), and SuperCollider (McCartney, 1996),
and software frameworks such as Ptolemy (Lee et al. 2003).
These environments allow code, flow graphs, and other
programming constructs to be entered, compiled, and run (in
separate phases).

Runtime environments, on the other hand, provide an engine
and a related set of interface elements for manipulating
parameters at runtime (and often in real-time). The graphical
front-ends of Max, as well as Real-Time CSOUND (Vercoe,
1990), Aura (Dannenberg and Brandt, 1996), and more
recently, Soundium 2 (Schubiger and Muller, 2003) are good
examples of runtime environments. These environments
compute audio in real-time, taking in data from input devices
and UI elements, and may also display graphical or video
feedback.

On-the-fly environments possess elements of both
programming and runtime systems – and most importantly, the
runtime capability to modify the structure and logic of the
executing program itself. Several existing environments
possess varying degrees of on-the-fly capabilities. Max and Pd
give programmers limited ability to change their patches at
runtime. The SuperCollider programming environment allows
for synthesis patches to be sent and added to a server in real-
time. Another interesting system for runtime graphical and
virtual-reality programming is Alice (Pausch et. al. 1995),
which allows users to create a virtual world, and to add and
modify behaviors using a high-level scripting language (Python
in this case) on-the-fly. This rapid-prototyping graphical
environment is notable for having no hard distinction between
development and runtime. Similarly, MATLAB (Mathworks),
while not intended as a real-time programming tool, has a
command line that directly uses statements from the language
and embodies a similar immediate run aesthetic. However,
many existing environments lack a unified timing framework.

3. ChucK + On-the-fly Programming
The Audicle is based on our previous work with the ChucK

programming language and on-the-fly programming. ChucK’s
timed-concurrency model and our operational semantics for on-
the-fly programming help form the foundation for the Audicle.
In this section, we overview the features of ChucK (we do not
discuss detailed implementation here) and the semantics of on-
the-fly programming that are pertinent to the Audicle.

In Proceedings of the 2004 International Computer Music Conference

3.1 ChucK
ChucK is a strongly-timed, concurrent, on-the-fly audio

programming language (Wang and Cook, 2003). It is not based
on a single existing language but is built from the ground up.
ChucK code is type-checked, emitted over a special virtual
instruction set, and run in a virtual machine with a native audio
engine and a user-level scheduler. The following ChucK
features and properties are pertinent to the Audicle:

• A straightforward way to connect data-flow / unit generators.
• A sample-synchronous timing mechanism that provides a
consistent, unified view and control of time – embedded directly
in the program flow. Time is decoupled from data-flow.
• A cooperative multi-tasking, concurrent programming model
based on time that allows programmers to add concurrency
easily and scalably. Synchronization is accurately and
automatically derived from the timing mechanism.
• Multiple, simultaneous, arbitrary, and dynamically
programmable control rates via timing and concurrency.
• A compiler and virtual machine that run in the same process,
both accessible from within the language.

ChucK’s programming model addresses several problems in
computer music programming: representation, level of control
for data-flow and time, and concurrency. We summarize the
features and properties of ChucK in the context of these areas.
In doing so, we lay the foundation for describing the semantics
of on-the-fly programming and the Audicle.

Representation. At the heart of the syntax is the ChucK
operator: a group of related operators (=>, ->) that denote
interconnection and direction of data-flow. A unit generator
(ugen) patch can be quickly and clearly constructed by using =>
to connect ugen’s in a left-to-right manner (Figure 2). Unit
generators logically compute one sample at a time. Parameters
to the unit generators can also be modified using =>. By
default, => deals only with data-flow (and control data), leaving
time to the ChucK timing mechanism.

(a)

noise n => biquad f => dac;
(b)

Figure 2. (a) A noise-filter patch using three unit generators.
(b) ChucK statement representing the patch. dac is the
global sound output variable.

Levels of Control. In the context of audio programming, we
are concerned not only with control over data but also over
time. The latter deals with control and audio rates, and the
manner in which time is reasoned about in the language. In
ChucK, the key to having a flexible level of control lies in the
timing mechanism, which consists of two parts. First, time
(time) and duration (dur) are native types in the language.
Time refers to a point in time, whereas duration is a finite
amount of time. Basic duration variables are provided by
default: samp (the duration between successive samples), ms
(millisecond), second, minute, hour, day, and week.

Additional durations (and times) can be inductively constructed
by performing arithmetic on existing time and duration values.

Secondly, there is a special keyword now (of type time) that
holds the current ChucK time, which starts from 0 (at the
beginning of the program execution). now is the key to
reasoning about and manipulating time in ChucK. Programs
can read the globally consistent ChucK time by reading the
value of now. Also, assigning time values or adding duration
values to now causes time to advance. As an important side-
effect, this operation causes the current process to block
(allowing audio to compute) until now actually reaches the
desired point in time. (Figure 3)

// construct a unit generator patch
noise n => biquad f => dac;

// lo : up
while(true) {

op date biquad every 100 ms

 // sweep biquad center frequency
 200 + 400 * math.sin(now*FC) => f.freq;

 // advance time by 100 ms
 100::ms +=> now;
}

Figure 3. A control loop. The => ChucK operator is used to
change a filter’s center frequency. The last line in the loop
causes time to advance by 100 milliseconds – this can be
thought of as the control rate.

The mechanism provides a consistent, sample-synchronous
view of time and embeds timing control directly in the code.
This formal correspondence between timing and code makes
programs easier to write and maintain, and fulfills several
properties (i.e. deterministic order of computation) – therefore,
ChucK is said to be strongly-timed. Furthermore, data-flow is
decoupled from time, and control rates are fully throttled by the
programmer. Audio rates, control rates, and high-level musical
timing are unified under the same mechanism.

Concurrent Audio Programming. The intuitive goal of
concurrent audio programming is straightforward: to write
concurrent code that shares data as well as time (Figure 4).

DAC White
Noise

BiQuad
Filter

impulse i => biquad f => dac;

while(true)
{
 // impulse train
 1.0 => i.value;
 // advance time
 50::samp +=>now;
}

while(true)
{
 // sweep
 next_f() =>
 f.freq;
 80:ms +=> now;
}

while(true)
{
 // poll
 sensor[8]
 = ene> list r;
.5::second+=>now;
}

Figure 4. Unit generator patch with three concurrent paths
of execution at different control rates (from left to right,
control period = 50 samples, 80 millisecond, 1/2 second)

ChucK introduced the concepts of shreds and the shreduler.
A shred is a concurrent entity like a thread. But unlike threads,
a shred is a deterministic shred of computation, synchronized
by time. Each of the concurrent paths of execution in Figure 4
can be realized by a shred. They can reside in separate source
files or be dynamically spawned (sporked) from a parent shred.

In Proceedings of the 2004 International Computer Music Conference

The key insight to understanding concurrency in ChucK is
that shreds are automatically synchronized by time. Two
independent shreds can execute with precise timing relative to
each other and to the virtual machine, without any knowledge
of each other. This is a powerful mechanism for specifying and
reasoning about time locally and globally.

This semantic resembles, and yet diverges from concurrency
models found in languages such as Formula (Anderson and
Kuivila, 1991), Nyquist, and SuperCollider. At the lowest
level, Chuck’s timing/concurrency model is fully deterministic
and data-driven (by samples or any other granularity), and is
not tightly coupled with any a priori model (such as musical
constructs in Formula). ChucK provides a fundamentally
expressive programming model in the sense that timing control
is embedded directly in the program flow (instead of only as
parameters or events, as in the above languages), enabling
precise timing control over the computational stream itself.

3.2 On-the-fly Programming
 On-the-fly programming is the practice of adding or

modifying code at runtime and presents several challenges that
include modularity, timing, manageability, and flexibility
(Wang and Cook, 2004). Our previous work described a
formal on-the-fly programming model based on the timing and
concurrency of ChucK and included both an external and an
internal semantic, as well as an on-the-fly performance
aesthetic (Figure 5). The external interface uses shreds to
provide modularity. The internal semantic provides a means to
precisely synchronize the shreds using the timing mechanism.
The Audicle both leverages this model and facilitates its usage.

Figure 5. An instance of the on-the-fly performance
aesthetic. Each computer is projected at runtime, allowing
for the programming process to be visually communicated
to the audience, constructing a live correspondence of the
intentions to the outcome.

External Interface. The on-the-fly programming model, at the
high-level, can be described in the following way. A ChucK
virtual machine begins execution, generating samples (as
necessary), keeping time, and waiting for incoming shreds. A
new shred can be assimilated on-the-fly into the virtual
machine, sharing the memory address space, the global timing
mechanism, and is said to be active. Similarly, an active shred
can be dissimilated (removed from the virtual machine),
suspended, or replaced by another shred. This interface is
designed to be simple, and delegates the actual timing and
synchronization logic to the code within the shred.

The high level commands to the external interface are listed
below. They can be invoked on the command-line, in ChucK
programs (as functions calls to the machine and compiler

objects), over the network, or – as we will see in Section 4 –
using the Audicle.

• Execute – starts a new instance of a virtual machine in a
new address space (in an infinite time-loop).

• Add – type-checks, compiles, and sporks a new shred (from
ChucK source file, a string containing ChucK code, or a
pre-compiled shred).

• Remove – removes a shred by ID from the virtual machine.
• Suspend – suspends and places a shred on the shredulers’s

suspended list.
• Resume – resumes a suspended shred. The shred will begin

execution at the suspended point in the code.
• Replace – invokes remove followed by an add.
• Status – queries the virtual machine for the following

information: (1) a list of active shred ID's, source, and
duration since assimilation (spork time), (2) VM state:
current shreduler timeline, CPU usage, synthesis resources.

As an example, Figure 6 shows code that adds a new shred
from file to the virtual machine using two different methods.

add foo.ck (a VM should b
shell%> chuck --add foo.ck

e listening already)

(a)
// compile shred from file "foo.ck"
compiler.compile(“foo.ck”) => code foo;
// advance time b
500::ms +=> now;

y 500 milliseconds

// spork "foo"
machine.spork(foo) => shred s_foo;

(b)
Figure 6. Two examples of using the runtime shred
management interface: (a) from a command-line shell, (b)
from within a shred, which has precise timing control.

Internal Semantics. The internal semantics of our on-the-fly
model deal with the issue of precise timing and synchronization
between on-the-fly modules (shreds). In our model, the
semantics are natural extensions of the ChucK timing
mechanism. By querying and manipulating time using the
special variable now, the programmer can determine the current
time, and specify how the code should respond. By the
properties of ChucK timing and concurrency: (1) now always
holds the current ChucK time. (2) Changing the value of now
advances time and has the side effect of blocking the current
shred (allowing audio and other shreds to compute) until now
“reaches” the desired time. (3) If t is of type time, t => now
advances time until t equals now. (4) If d is a duration, d +=>
now advances time by d. Examples of time-synchronization:
• Let time pass for some duration (in this case 10 seconds)

now + 10::second => now;
 // or simply:
10::second +=> now;

• Synchronize to some absolute time t
t => now;

• Synchronize to some absolute t (or after) time
if(t < now) t => now;

• Synchronize to the beginning of next period of duration T
120::ms => dur T; // period to synchronize to
T – (now % T) +=> now; // advance time by remainder

• Synchronize to the beginning of next period, plus offset D
T – (now % T) + D +=> now;

• Start as soon as possible
// no code necessary

In Proceedings of the 2004 International Computer Music Conference

4. The Audicle
The Audicle is a graphical, on-the-fly audio programming

environment. It is based on the semantics of on-the-fly
programming and ChucK’s strongly-timed concurrency model.
This powerful feature of the language is extended in the
Audicle in that concurrency is also visualized. Thus, the
Audicle’s graphical aesthetic is given significant consideration
in the design: it is to be visually bold, colorful, and open to
customization. It aims to provide an orthogonal set of tools and
visualizations that can be combined into more complex
configurations and usages. Much of the information is
conveyed by 3D shapes, which can be viewed from virtually
any viewpoint or distance. The Audicle is rendered exclusively
using 3D graphics (no external windowing system is involved),
running in full-screen or windowed mode. We present its
design and properties (Sections 4.1 and 4.2) and discuss its
implementation (Section 4.3). We show that the Audicle is
capable of achieving expressive, high-quality audio synthesis in
combination with high-performance visualizations.

4.1 Design of the Audicle
In the Audicle, there is no distinction between development

and runtime: all components are fully accessible at runtime.
This integration is based on the ChucK compiler and virtual
machine – augmented with a smart editor and interfaces for
viewing/manipulating concurrency, timing, and system state.
The design philosophy is one of runtime cohesion of phases
and visualizations of system state.

As in ChucK, data-flow and time are fundamentally
decoupled, leading to more expressive and clearer audio
programs. Also, the Audicle’s architecture is based on a
decoupled simulation model for virtual reality (Shaw et. al,
1992). In this model, the simulation can operate at an arbitrary
rate independent of the graphics rendering-rate, leading to
smoother graphics and more flexibility in the simulation
algorithms. In the Audicle, audio synthesis, graphics, and
simulation are loosely-coupled, with the highest priority given
to audio computations and the virtual machine.

Out of the desire to provide a simple, “graspable” virtual
environment and interface, we associate the Audicle with a
simple geometric shape. The various parts of the Audicle are
mapped and displayed on the faces of a virtual cube, called the
Audicube (Figure 7a). At any time, the user can interact with
one face, and have the ability to move to others faces by using
hotkeys (USER_KEY+[up|down|left|right|face#]), graphical
interface, Audicle shell commands (%> face 4 -or- %> face
shredder), or even ChucK statements (audicle.face(4);).

There is a slim command-line console (Figure 7b) that can be
invoked to appear over the currently active face. The console
resembles that of MATLAB, where statements of the
underlying language can be entered directly on the command-
line. The key difference is that the Audicle console also has a
strong notion of time. For example, it is possible to write a
console command that loops and fires off N number of shreds,
100ms apart (see example in Figure 7b). Indeed, the Audicle
console itself is a powerful on-the-fly programming tool.

On the Audicube, there are 5 primary faces plus one blank
tabula rasa face for real-time graphics or for use as an
audio/visual scratchpad. These faces are listed below and
discussed in detail in Section 4.2.

• Concurrent Editor – “smart” editor interface
• Compiler-space – deep structure of the program
• VM-space – system resource and I/O management
• The Shredder – shred and concurrency management
• Time and Timing (TnT) – time management
• Tabula Rasa – blank slate (“anything goes here”)

(a)

(b)

Figure 7. (a) Faces of the Audicube. The ‘cube can be
“unrolled”, or “stacked” into a networked configuration.
The six faces are shown on the two sides. (b) Audicle
Console. The interface (left) can be used to graphically
navigate the Audicube. The on-the-fly command prompt
(right) accepts ChucK statements and Audicle commands
(built using ChucK macros).

Additionally, the Audicle is designed to be a networked,
collaborative development and performance environment. The
simplest type of collaboration involves several Audiclae
connected over a network sharing a central virtual machine for
audio synthesis and computation. In this scheme, precise
timing can be preserved. For example, each Audicle can send
pieces of ChucK code over TCP/IP to be compiled and
executed on a central Audicle, with precise timing embedded
within the code. Concurrency provides modularity and
organization, while the timing mechanism ensures that all
modules can operate together with correct timing and other
synchronizations (i.e. asynchronous events). As part of future
work, we will investigate more complex Audiclae topologies.

In Proceedings of the 2004 International Computer Music Conference

4.2 Faces of the Audicube
Concurrent Editor. The editor is the primary interface to
enter/edit code (an alternative is the console). It is on-the-fly –
new code can be written and assimilated while existing code is
running in the virtual machine. The editor is also concurrent,
allowing programmers to create both serial and parallel code
blocks by constructing a flow-graph of code (Figure 9a). A
new concurrent shred can be introduced by adding a code
block. Directed edges in the graph determine the parent/child
relationship between concurrent code blocks. Furthermore,
blocks can also be named and reused.

There is an one-to-one correspondence between concurrent
ChucK code and the flow graph – the edges in the graph map to
spork statements in ChucK, allowing for any ChucK program
to be uniquely represented as code or as a graph. Also, the
editor automatically visualizes ChucK statements using simple
objects (Figure 9b). The result is a 3-dimensional, Max/Pd-like
sub-environment with a very important underlying difference:
this visualization only displays data-flow, leaving time to be
dealt with separately in the code using ChucK’s timing
mechanism, again separating data and time.

(a)

(b)

Figure 8. Concurrent Editor. (a) The editor allows the
programmer to construct flow-graphs of concurrent code. Arrows
represent sporking of new shreds. Code can be on-the-fly edited,
tested, compiled, and sporked using the editor or the console. (b)
ChucK code is entered (left). In the same space, parts of the
program structure are visualized. In this example, the two simple
patches (left top) are automatically represented by similarly-
colored objects (right).

The editor is "smart" in several senses. First, it has access to
the deep structure of the existing ChucK program, including
type and timing information, in addition to results gathered
from live background processing. The editor can use this
information to suggest potential statement completions (class
members, arguments, etc.). This is similar to features in
existing commercial integrated development environments
(IDE’s) such as Microsoft Visual Studio. Also, the editor
serves an important ChucK-specific task – that of assisting
resolutions of the massively-overloaded ChucK operator.

Second, since ChucK programs are type-checked and
emitted into virtual ChucK instructions, the editor can serve as
an “on-the-fly debugger”. It is possible to halt the program at
any instruction and change the code before or after it.

Finally, there are various options for running and testing the
code. (One useful option is to “test-run” the code in a
protected “sandbox” environment) These can be accessed via
the graphical interface buttons, keyboard shortcuts, or through
the Audicle console.

Compiler-space. The compiler-space face of the Audicle
allows viewing of the deep structure of the program gathered
during compilation. Many aspects of the program structure can
be visualized here. The syntax tree, with typing annotations is
available for all code segments. One can see the ChucK virtual
instructions emitted from a piece of code. Also, the user can
examine global variables, or select a shred (from the console or
the Shredder) and examine values of local variables during
runtime. It is possible to traverse the compiler-space in 3D and
to select code segments to be displayed in the editor.

Figure 9. Compiler-space Explorer. In this example, the real-
time shred-sporking pattern for a code segment is shown, with
red objects representing points in the code where shreds were
sporked, and blue and green representing paths of execution. The
structure grows dynamically. Clicking on the objects invokes
appropriate actions (viewing code or switching to another face).

The Shredder. The Shredder visualizes and manages shreds
and concurrency. While it is possible to do this from within the
language or via the console, the Shredder provides a more
straightforward (and often more timely) interface to
add/remove/modify shreds. The Shredder operations can also
be mapped to input devices, allowing shreds to be managed
with minimal typing and other user-introduced latency.

In Proceedings of the 2004 International Computer Music Conference

Programmers can view all the shreds in the virtual machine
using a text-based list and/or a graphical tree-view (Figure 10).
Because code can generate code or originate from other
Audiclae, the shreds in the Shredder are identified as local,
generated, or remote. Additionally, shred id/name, creation
time, number of cycles computed, number of context switches,
and state (active, suspended) are available for each shred.

(a)

(b)

Figure 10. The Shredder. (a) Visualization of shred
activity. Larger spheres are parent shreds. The smaller
child shreds “orbit” the parents at a rate proportional to their
current average control rate. The names refer to the parents.
(b) On-the-fly timetable of shreds in the virtual machine.

An important use of this mechanism is to monitor and
manage currently executing shreds, and to identify hanging or
non-cooperative shreds. For example, if the system runs a
shred containing an infinite loop, it will fail to yield and cause
the virtual machine execution unit to hang indefinitely. This
type of behavior can never be reliably detected at compile time
(the Halting Problem). However, the on-the-fly programmer
can identify and remove misbehaving shreds from the virtual
machine manually by suspending them in the Shredder (and
potentially debugging them immediately in the editor),
resulting in minimal interruption to the session. While this
recovery mechanism is far from perfect, it is far more
advantageous over killing the system and restarting. Similarly,
it can help the programmer optimize the system by identifying
shreds that are consuming too much CPU time.

Time and Timing (TnT). This face is a visualization of
shreduling at runtime. It is like an electrocardiogram (EKG).
Parallel lines, representing active shreds, move along in ChucK

system time. The nature of the time-based concurrency in
ChucK implies that shreds only compute at discrete points in
time, and must explicitly allow time to advance. When a shred
computes, a spike is displayed on the corresponding line. The
height of the spike is mapped to some measure of resources
consumption (such as computation cycles). (Figure 11)

Figure 11. (left) EKG of the shreds. Spike height is a quick
estimate of computations per execution in time. (right)
Clock array visualization of average shred control rates.

This visualization presents a way to gain a high-level glance
at the overall timing behavior. For example, it is easy to see
how frequently each part of the system is computing (an
effective view of relative control rates) and gain a rough idea of
resources used as a function of time.

VM-space. The VM-space contains useful (or interesting)
runtime information and statistics about the Audicle and the
virtual machine. It is responsible for management of input
devices, interface protocols (MIDI, OSC, SKINI), dynamic
linking, and network connectivity (including establishing
connections with remote Audiclae). Additionally, CPU load,
unit generator resources, and analysis output (such as FFT and
audio feature extraction), can be displayed here.

Figure 12. The VM-space Explorer. In this case, we see
the input waveform (top-left) and its FFT magnitude
spectrum (bottom-left), as well as resource usage (right).

Tabula Rasa. The "blank slate" face is actually not limited to
one face, but any number of faces as requested by the
programmer. Content is fully programmable using ChucK and
the OpenGL API. In addition, the ChucK graphical
programming interface includes access to the Audicle graphics
and windowing engines, along with its set of minimal user
interface widgets (used in the rest of the Audicle). This space
makes the Audicle suitable for rapidly developing custom,
high-performance graphical front-ends for synthesis, analysis,
and performance.

In Proceedings of the 2004 International Computer Music Conference

4.3 Implementation Overview
The Audicle’s implementation consists of a graphical

rendering engine, a low-latency I/O & networking framework,
a minimal windowing system, and internal logic with interface
into the ChucK virtual machine. The implementation (in
C/C++, with some high-level components are written in
ChucK) reuses many data structures from ChucK’s compiler
and virtual machine. All components run in the same address
space.

The graphics-rendering engine of the Audicle (implemented
in the OpenGL API) runs on Mac OS X, Linux, and Windows.
Using 3-D graphics exclusively with real-time audio synthesis
can be highly feasible. With even modest graphics hardware
support, the vast majority of the rendering can take place on the
GPU (graphics processing unit), leaving CPU cycles (85-95%)
for synthesis. Using custom-built, minimal user interface
elements, we can handle user-interface events more efficiently
than the windowing sub-system, and with potentially better
responsiveness. Because the rendering-rate stays relatively
constant (at 30+ frame/second), the CPU usage stays constant
and is less subject to large bursts due to user interface
processing. Also, 3D graphics is flexible. It can emulate 2D
when needed, and also provides significant viewing freedom.

5. Conclusions and Future Work
On-the-fly programming opens the potential for interesting

interactions and visualizations in the audio programming
process. Through the different faces in the Audicube, the
programmer, composer, and performer can develop code in a
truly concurrent editor, and simultaneously visualize its
behavior in terms of concurrency, timing, and its runtime
interactions with the rest of the system. Concurrency, a natural
and useful way to represent many concepts in sound and music,
is captured by ChucK, and visualized by the Audicle.

The integrated, on-the-fly environment of the Audicle
completes the development-to-runtime loop. The result is
greater than the sum of its parts. The expressive power of
coding is made available for runtime manipulation. In turn, on-
the-fly information from runtime aids the development process,
expanding the horizons of both. We gain the advantages of
immediate feedback in an always-modifiable continuum.

Additionally, the Audicle motivates a new kind of audio
programming mentality – one involving continuous exploration
and experimentation. Recall our points on on-the-fly
programming from Section 3.2. The Audicle further motivates
this notion of runtime programmability as a new form of
performance aesthetic, where code is used to expressively
control the synthesis and the process is conveyed to the
audience. It also provides a platform where a degree of
virtuosity can evolve. Due to its visual nature and immediate
feedback, the Audicle can also be a useful compositional
environment, where the composer can incrementally work on
concurrent parts of a program piece. Similarly, it could
function as an educational tool, for teaching synthesis, audio
programming, or multimedia.

Potentially, the Audicle is the beginning of a new class of
environments for developing programs on-the-fly, as well as

for visualizing the audio programming process. We look
forward to experimenting with new interfaces for on-the-fly
editing and code control, and new types of visualizations.
Also, future work can investigate the technical and aesthetic
aspects of collaborations between remotely connected
Audiclae, as well as devise new on-the-fly programming
systems and environments.

http://audicle.cs.princeton.edu/

6. Acknowledgements
We sincerely thank Ari Lazier, Nick Collins, Alex McLean,

Adrian Ward, Julian Rohrhuber, and the Princeton Graphics
Group for their encouragement, ideas, and support.

References
Anderson, D. P. and R. Kuivila. 1991. “Formula: A Programming

Language for Expressive Computer Music.“ IEEE Computer
24(7):12-21.

Dannenberg, R. B. and E. Brandt. 1996. "A Flexible RealTime
Software Synthesis System." In Proceedings of the International
Computer Music Conference. International Computer Music
Association, pp. 270-273.

Dannenberg, R. B. 1997. “Machine Tongues XIX: Nyquist, a
Language for Composition and Sound Synthesis.” Computer
Music Journal 21(3):50-60.

Lee, E. 2003. "Overview of the Ptolemy Project," Technical
Memorandum UCB/ERL M03/25, U. C. Berkeley.

McCartney, J. 1996. "SuperCollider: A New Real-time Synthesis
Language." In Proceedings of the International Computer Music
Conference. International Computer Music Association.

Mathworks, Inc. MATLAB Documentation.
http://www.mathworks.com/

Pausch, R., T. Burnette, A. C. Capeheart, M. Conway, D. Cosgrove, R.
DeLine, J. Durbin, R. Gossweiler, S. Koga, J. White. 1995.
"Alice: Rapid Prototyping System for Virtual Reality." In IEEE
Computer Graphics and Applications, May 1995.

Puckette, M. 1991. "Combining Event and Signal Processing in the
MAX Graphical Programming Environment." Computer Music
Journal 15(3):68-77.

Puckette, M. 1997. "Pure Data." In Proceedings of the International
Computer Music Conference. International Computer Music
Association, pp. 269-272.

Schubiger S. and S. Muller. 2003. "Soundium 2: An Interactive
Multimedia Playground." In Proceedings of the International
Computer Music Conference. International Computer Music
Association, pp. 301-304.

Shaw, C., J. Liang, M. Green, and Y. Sun. 1992. "The Decoupled
Simulation Model for Virtual Reality Systems." In Proceedings of
the ACM SIGCHI Human Factors in Computer Systems
Conference. pp. 321-328.

Vercoe, B. and D. Ellis. 1990. “Real-Time CSOUND: Software
Synthesis with Sensing and Control.” In Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 209-211.

Wang, G. and P. R. Cook. 2003. "ChucK: a Concurrent and On-the-
fly Audio Programming Language." In Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 219-226.

Wang, G. and P. R. Cook. 2004. “On-the-fly Programming: Using
Code as an Expressive Musical Instrument.” In Proceedings of
the International Conference on New Interfaces for Musical
Expression. pp. 138-143.

	Abstract
	Introduction
	Background
	Goals of the Audicle
	Existing Environments

	ChucK + On-the-fly Programming
	ChucK
	On-the-fly Programming

	The Audicle
	Design of the Audicle
	Faces of the Audicube
	Implementation Overview

	Conclusions and Future Work
	Acknowledgements
	References

