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Figure 0. A ChucK-based programming model for building audio analysis and synthesis programs. 

 
ABSTRACT 

In this paper, we present a new programming model for 
performing audio analysis, spectral processing, and 
feature extraction in the ChucK programming language. 
The solution unifies analysis and synthesis in the same 
high-level, strongly-timed, and concurrent environment, 
extending and fully integrating with the existing 
language framework. In particular, we introduce the 
notion of a Unit Analyzer (UAna) and new constructs 
for dataflow, data types and semantics for operations in 
analysis domains, and mechanisms for seamlessly 
combining analysis and synthesis tasks in a precise, 
sample-synchronous manner. We present the motivation 
of our system, and describe new language-level 
syntaxes, semantics, and the underlying implementation. 
We provide code examples and discuss potential uses 
and benefits of the system for audio researchers, 
performers, and teachers. 

1. MOTIVATION 

Combining analysis and synthesis in the same 
framework can lead to interesting applications, as 
exemplified by the works of Roger Dannenberg and 
Chris Raphael [7], Nick Collins [4], and many others. 
Existing systems are mostly implemented in 
combinations of low-level C modules, open source 
libraries and frameworks, high-level languages, and 
proprietary software. We’d like to enable more people 
to experiment with, prototype, and create new tools and 
systems like these, starting from a single unified, high-
level platform, without minimizing the need to develop 
plug-ins in other languages (e.g., C) or to write custom 
low-level modules from scratch. 

 

Such a unified programming platform, we believe, 
should successfully address the following issues. First, 
in many musical applications, analysis and synthesis 
inform one another. Therefore, the environment should 
facilitate and encourage this symbiotic relationship, 
placing equal emphasis on the two, and providing 
flexibility and ease of programming for both. Next, the 
system should present a precise and flexible 
programming model with which programmers can 
rapidly prototype and implement analysis and synthesis 
tasks – and perhaps even do on-the-fly. Additionally, 
the high-level abstractions in the system should expose 
essential low-level parameters while doing away with 
syntactic overhead, thereby providing a highly flexible 
and open framework that can be easily used for a variety 
of tasks. Finally, it’s extremely important that the 
written code represent the underlying algorithms and 
dataflow precisely and clearly. Overall, we envision a 
language that meets these criteria and that can be 
equally suitable for audio research (e.g., synthesis, 
spectral processing, feature extraction), pedagogy, 
composition, and musical performance.  

There exist frameworks and languages that 
effectively address some components of our goals, 
including synthesis systems that accommodate analysis 
tasks and vice versa, and standalone systems that 
perform a specialized analysis/synthesis task. What we 
hope to achieve, in this work, is to produce a single 
programming platform that meets the need of a broad 
audience by offering solutions from programming 
language perspective. In doing so, we hope to encourage 
new and different ways to think about audio 
programming for audio and synthesis. 

In this paper, we present our programming model for 
specifying precise audio analysis and synthesis tasks in 
the ChucK programming language – specifically 
designed to address the goals we outlined above. We 



  
 
have designed and implemented new language 
constructs and integrated them into the existing ChucK 
framework, in a way that strives to capitalize on 
programmers’ understanding of the existing language 
features, making analysis objects, dataflow, and control 
analogous to (but appropriately distinct from) their 
synthesis counterparts. The new system inherits the 
precise timing and concurrency model of ChucK and 
supports a syntax that clearly delineates dataflow and 
control in both analysis and synthesis processes. 

The rest of this paper is organized in the following 
way. In Section 2, we situate our motivations and goals 
in the context of existing analysis and synthesis 
environments and tools. Section 3 presents our design of 
a new hybrid analysis/synthesis programming model. In 
Section 4, we illustrate this system using several 
examples of basic building blocks for analysis tasks. 
Section 5 addresses the implementation decisions 
involved in creating and integrating this model into 
ChucK. We conclude by discussing potential 
applications of a unified ChucK analysis/synthesis 
environment in Section 6 and future work in Section 7. 

2. RELATED WORK 

2.1. Analysis In Synthesis Environments 

There are several high-level synthesis programming 
environments that provide modules for analysis-related 
tasks. Max/MSP [20] provides objects for forward and 
inverse FFT (via the fft~, ifft~, and related 
objects), constructs to facilitate windowing and overlap 
(e.g., pfft~), and support for frame-based operations. 
SuperCollider [15] provides FFT/IFFT Unit Generators 
as well as a variety of specialized objects for spectral 
processing (e.g., the PV_* objects as well as third-party 
objects for feature extraction and onset detection [5]). 
CSound [24] includes a variety of FFT-based spectral 
processing tools (e.g., cvanal, hetro, lpanal, 
pvanal). The analysis functionality of these systems 
relies on pre-made, “black-box” objects (e.g., coded and 
imported from C/C++) to meet the needs for common, 
specific analysis tasks. While these are powerful for 
many types of tasks, these environments, in general, are 
more intended for synthesis and less for designing and 
implementing new, low-level analysis systems directly 
in the language. Furthermore, many low-level analysis 
design tasks demand clear and precise control over time, 
and we believe that this may be difficult to achieve for 
many analysis tasks in existing systems. 

Nyquist [6] allows programs to perform FFT/IFFT 
and directly access and manipulate frame-level data, 
which opens the door to explicit, low-level analysis and 
spectral manipulation in the program. Our system builds 
on this idea by providing a distinct, general class of 
analysis objects and by allowing a generic 
representation of the data passed between analysis 
modules (including, but not limited to, FFT frames). 
Furthermore, our analysis system applies the existing 
ChucK framework of time-based control and module 
connection for analysis. 

2.2. Frameworks for Audio Analysis 

Recent years have seen a proliferation of general tools 
and frameworks to perform audio analysis, particularly 
in the area of music information retrieval (MIR). 
Commonly used tools specialized for MIR include 
MARSYAS [23], CLAM [1], SndObj [12], 
MATLAB/Octave [14], M2K [8], and jAudio [16] / 
jMIR [17]. These tools support feature extraction from 
audio files, and classification and learning from these 
features. MARSYAS, SndObj, and CLAM also provide 
objects for high-level analysis/resynthesis (e.g., 
phasevocoder, sinusoidal resynthesis, spectral modeling 
synthesis). These are primarily libraries and 
frameworks; as such, they offer programmability at a 
different level than languages such as ChucK. As far as 
we can tell, there is no high-level language specialized 
for analysis tasks, much less one focused on support for 
real-time combined analysis and synthesis. Therefore, 
we feel that a ChucK-oriented programming model can 
be potentially interesting in its own right, and may serve 
as a complimentary tool to existing systems. 

Rapid prototyping tools have an established role in 
MIR. M2K, for example, has been developed for this 
purpose. It provides a graphical patching environment 
for feature extractors, classifiers, and other modules. 
Dataflow and functionality in M2K itineraries are 
determined by connections between built-in and user-
created objects, implemented in Java. MARSYAS also 
provides support for rapid prototyping, via Python and 
MARSYAS Scripting Language [3]. Our approach 
differs from these in that we hope to enable rapid 
experimentation from a single, high-level programming 
platform, further reducing turnaround time. 

2.3. Analysis and Resynthesis Applications 

There exists a set of applications such as AudioSculpt 
[2], SPEAR [10], and TAPESTREA [18] that integrate 
analysis and synthesis capabilities, in order to perform 
tasks such as transformation and resynthesis of existing 
sounds, and other processing such as cross-synthesis. 
These are specialized and do not intrinsically offer 
programmability, whereas we are interested in allowing 
programmers to implement similar tasks “from scratch” 
and to do so in real-time. 

2.4. ChucK 

ChucK [25] is a programming language for audio 
synthesis, whose programming model promotes a strong 
awareness of time and concurrency, and encourages 
rapid experimentation via on-the-fly programming. Unit 
generators can be dynamically connected and control 
can be asserted at any unit generator at any time and at 
any rate. ChucK also supports a precise concurrent 
programming model in which processes (called shreds) 
can be naturally synchronized via the timing mechanism 
and events. The property of precise low-level control 
over time and parallelism embedded in a high-level 
language is a foundation of ChucK’s design, and we 
believe this property is highly desirable in programming 
analysis systems as well. 



  
 

3. DESIGNING FOR ANALYSIS IN CHUCK 

One of the first tasks in integrating analysis into ChucK 
was to design a hybrid programming model where both 
analysis and synthesis components fit naturally into the 
language and can work well together. Questions that 
arose include the following. How does a “strongly-
timed” programming language handle operations and 
data/metadata in frequency (and other) domains? How 
might we exploit analogies to existing synthesis 
paradigms to allow elegant representation of analysis in 
the code? What is the appropriate level of detail and 
control, and how can we provide this while maintaining 
clarity and conciseness in the code? How should the 
similarities and differences between analysis and 
synthesis be reflected in the syntaxes and semantics? 

One observation that shaped the answers to some of 
these questions was that even though we wish to carry 
out computation in transform domains (e.g., frequency), 
we still need to understand and control these operations 
with respect to time. For example, real-time spectral 
analysis is commonly performed via the Short-Time 
Fourier Transform (STFT), breaking up the audio 
stream into overlapping windows. In such analysis, 
parameters such as windowing, zero padding, and 
overlap and hop size can be crucial to the quality of the 
analysis. We wish to allow programmers to flexibly 
control these and other parameters over time, to operate 
on the results in a straightforward manner, and to reason 
about how and when analysis computations occur. 

Our solution is threefold. First, we introduce the 
notion of a Unit Analyzer, which carries with it a set of 
operations and a connection model that resemble but are 
distinct from those of a Unit Generator. Following from 
this connection model, we then present an augmented 
dataflow model with datatypes, operators, and new 
objects. Third, we make use of the existing timing, 
concurrency, and event mechanisms in ChucK as a way 
to precisely control analysis processes. In the following 
subsections, we present each component in the context 
of established mechanisms for synthesis in the ChucK 
language. Section 4 supplies more in-depth and concrete 
examples to illustrate these ideas in practice. 

3.1. Unit Analyzer 

The Unit Generator (UGen) [13] is a building block of 
many synthesis systems, including ChucK. It is a 
modular abstraction of a single operation whose input 
and output are audio samples, and whose behavior is 
controlled through parameters that can be modified over 
time. In ChucK, UGens can be dynamically connected 
and disconnected in a global synthesis network, via the 
ChucK (=>) and unChucK (=<) operators. The ChucK 
Virtual Machine synchronizes the computation of the 
UGen network with that of ChucK shreds. 

The principles of modularity, control via parameters, 
and relationship to a network of operations are well 
understood and might be applied to analysis “building 
blocks” as well, where the input and/or output may be 
data other than audio samples. Therefore, we introduce 

the notion of a Unit Analyzer (or UAna, pronounced “U-
Wanna,” plural UAnae). Like a UGen, a UAna defines a 
set of control parameters and can be dynamically 
patched with other UAnae and UGens. In contrast to 
UGens, UAnae pass generic data that may be in the 
form of spectral frames, feature vectors, metadata, or 
any other (intermediate) products of analysis. Natural 
candidates for UAnae include domain transformations 
such as FFT/DWT, feature extractors such as RMS, 
Flux, ZeroCrossing, and operations such as Correlation. 

3.2. Dataflow 

Currently in the language, the ChucK operator (=>) 
specifies how samples are passed between UGens in a 
synthesis network with respect to time. In a UGen-only 
network, UGens are connected via => in a chain that 
terminates at a system-defined “sink” UGen (e.g., dac). 
The sink drives audio computation by “pulling” samples 
through the chain, starting with its “upstream” UGen 
neighbors. When an intermediate UGen is pulled (i.e., a 
downstream UGen requests the next sample), it first 
requests the sample from its upstream neighbor(s), then 
performs its own computations, and finally passes the 
output downstream. (This is often referred to as the 
“pull model.”) 

 
Figure 1. The ChucK and upChucK operators. Note 
how the upChucK is similar in representation but 
suggests orthogonal type of connection. 

Because data passed between UAnae is not 
(necessarily) audio samples, and the relationship of 
UAna computation to time is fundamentally different 
(e.g., UAnae might compute on blocks of samples, or on 
metadata), the connections between UAnae have a 
different meaning. This difference is reflected in the 
choice of a new connection operator, the upChucK 
operator: =^ (see Figure 1). =^ has the following 
properties. First, a connection can be created between 
two UAnae using =^ to indicate that the upstream UAna 
should pass its output as an input to the downstream 
UAna. This data is generated and passed at the pull 
request from the downstream UAna. Unlike the UGen 
pull model, however, there is no cascade of UAna pull 
requests that is automatically initiated by a sink. Instead, 
UAna chains must be explicitly driven by an operation 
in code, invoked at the UAna where analysis output is 
desired. This operation is performed via the 
.upchuck() member method, which initiates a cascade 
of pull requests upstream along all UAnae connected 
using =^, and then returns the analysis result at this 
point (see Figure 2 for an example). Because of the 
generic nature of data passed between UAnae and the 
need to directly access intermediate analysis data, the 
analysis output is represented in UAnaBlob objects, 



  
 
which can contain vectors and matrices of numeric data 
as well as object references. 

 
Figure 2. An example UAna network. 

The combination of =^ and the explicit .upchuck() 
operation allows the programmer to clearly construct 
UAna networks, and to selectively compute subgraphs 
at precise points in time. Each UAna caches its most 
recently computed UAnaBlob, associating it with a 
ChucK time stamp. If additional pull requests arrive at 
the same point in ChucK time, the cached copy is 
returned. Finally, it is possible to use => to connect 
UGens and UAnae together, providing the means both 
to bridge synthesis and analysis subgraphs and for 
UAnae to generate and process audio samples (see 
Figure 3 for example). 

 
Figure 3. Connecting UGens to UAnae and back. 

3.3. Programming Model and Time 

One of the central strengths of ChucK is its precise 
control over time from the language. Embedded time 
advancement directives (e.g., 10::ms => now;) allow 
programmers to specify timing at both high and low 
levels, and lead to more readable code in which exact 
timing can be readily inferred. Time is essential to 
synthesis in ChucK, for the timing directives serve as 
synchronization mechanisms between shreds in the 
ChucK virtual machine and UGens in the synthesis 
engine. In a sense, time is sound in ChucK. 

 
Figure 4. FFT analysis. 

We adopted this time-based programming model for 
the analysis system, allowing the programmer to invoke 
the .upchuck() operations at any point in time. This 
model extends to analysis, the precision and clarity of 
the synthesis programming model. For example, in 
Figure 4, we show an example of taking successive 
STFTs via the FFT UAna. Using the timing model, we 
are able to advance time by arbitrary “hops.” Note that 
the key parameters of STFT are clearly represented. 
Furthermore, this model allows hop size and overlap to 
be dynamically changed in a natural and highly precise 
manner. 

Additionally, we can create concurrent, hybrid 
analysis/synthesis programs, where various components 
can compute at potentially different rates. We can also 
leverage the concurrent and event programming model 
to provide additional clarity and control in a multi-
shredded, multi-rate environment. Figure 5 shows an 
example involving generic UAnae. 

 
Figure 5. Multi-shredded, multi-rate analysis, with 
event notification. 

The three components presented in this section form 
the basis of our analysis programming model.We next 
illustrate the flexibility and clarity of the system via 
more example code and discussion regarding several 
classes of analysis tasks. 

4. EXAMPLES 

4.1. Spectral processing 

We first demonstrate some spectral processing building 
blocks by dissecting a simple FFT-based cross-
synthesizer, shown in Figure 6. We first instantiate two 
FFT UAnae, and connect one audio source to each (lines 



  
 
2–3). FFT is a special type of UAna, which 
“accumulates” audio samples from a UGen input. For 
this reason, we connect both to either dac or 
blackhole, which drives the UGen network 
(blackhole is much like dac, but produces no sound 
output). We then create and connect an IFFT object to 
the dac. IFFT is also special in that it produces audio 
samples. When pulled by dac, IFFT supplies the next 
samples in its overlap-add result buffer. Next, we set the 
parameters of the FFT and IFFT objects (lines 6–13). 
We then create two complex arrays to hold the output of 
the FFT’s (lines 12–13). Native complex and polar 
datatypes and associated operations have been added to 
facilitate spectral processing (see Section 5). 

In the control loop, the .upchuck() causes the FFTs 
to perform the transformations on the data in their 
respective accumulation buffers (this will compute on 
empty or partially empty buffers at startup). The results 
are acquired, point-wise multiplied, and copied back 
(lines 23–29). The IFFT object is then upchucked (line 
31); the results of the inverse transform will be overlap-
added into the IFFT’s output buffer. Lastly, we advance 
time by one hop before repeating the loop (line 34). 

 
Figure 6. A simple FFT-based cross synthesizer. 

4.2. Feature Extraction 

Our system supports straightforward extraction of 
arbitrary time and frequency domain features, which 
might be stored or used as parameters to drive real-time 

synthesis. For example, Figure 7 shows the UAna 
network for extracting several standard spectral features. 
In this example, we create an optional “agglomerator”  
UAna that does no computation but, when upchucked, 
drives the synchronous computation of all UAnae 
connected to it. The output of the FFT object is 
connected to each of these spectral feature extractors, so 
synchronous feature computation can take advantage of 
caching at the FFT object. Alternatively, the 
programmer can also choose to .upchuck() each 
feature extractor at separate rates. Note that this can be 
easily modified to be multi-shredded and event-driven, 
similar in form to the example in Figure 5. 

 
Figure 7. Simple spectral feature extraction. Note that 
parameters can be dynamically set for feature 
extractors at any point in the code. 

The list of supported or planned feature extractors 
includes Centroid, RMS, Flux, RollOff, MFCC, 
ZeroCrossing, Correlation, and several others. Since we 
can directly access and manipulate the intermediate 
analysis results (via UAnaBlobs) at any point, it is also 
possible to experiment with and implement custom 
feature extraction algorithms directly in ChucK. 

4.3. Combining Analysis and Synthesis 

A primary goal of the system is easy integration of 
analysis and synthesis in the same program. As a simple 
example, consider the real-time separation of vowels 
and consonants in an input audio stream into distinct 
channels. UAnae would be responsible for identifying 
the vowel/consonant components while UGens would 
be used before and after analysis to capture and render 
the audio, informed by the analysis results in real-time. 

Another example of a hybrid system is real-time LPC 
analysis, transformation, and resynthesis [19]. In this 
case, one might use the Correlation object to compute 
the linear prediction coefficients, along with pitch/non-
pitch and power estimation. These coefficients can 
either be stored or relayed to LPC resynthesis module 
for transformation and rendering. 



  
 

These are a few examples of what is possible. By 
leveraging the generality and precision of the model, we 
believe it can be straightforward to specify a variety of 
algorithms for synthesis and analysis directly in ChucK. 

5. IMPLEMENTATION 

5.1. Underlying Language Support 

In order to support the analysis system described above, 
we have made the following additions to the ChucK 
programming language and virtual machine. First, we 
added native datatypes for UAna, UAnaBlob, complex 
and polar, and defined their behaviors on relevant 
operations. We then extended the UGen framework and 
introduced a UAna data pipeline, as well as support for 
introducing new UAna objects into the type system and 
virtual machine. Additionally, we implemented an initial 
set of basic UAnae. 

 
Figure 8. Some operations on complex and polar 
types. 

5.2. Complex and Polar Data Types 

As part of our goal of placing equal emphasis on 
analysis and synthesis, we introduce two additional data 
types: complex and polar, intended provide strongly-
typed and flexible handling of data, particular for 
spectral processing, where the need to manipulate 
scalars and vectors in complex or polar form arises more 
frequently. 

In the new analysis system, complex values can be 
stored in complex and polar variables and expressions 
and used in computation. Their components can be 
accessed via the dot operator. See Figure 8 for 
examples of use. 
 

5.3. Dataflow Pipeline 

In order to support the semantics of .upchuck(), we 
have integrated a UAna subsystem into the ChucK 
engine. Similar to synthesis, where UGens are “ticked” 
to generate and/or process audio samples, UAnae are 
“tocked” to generate and process UAnaBlobs. A 
separate “overlay” UAna network is maintained over the 
synthesis network. The reason is for this is that some 
UAnae (e.g., FFT and IFFT) deal with both audio 
samples and UAnaBlobs. In the case of domain 
transformation UAnae such as FFT and DWT, samples 
are ticked into an “accumulation buffer” that always 
holds the previous W samples, where W is equal to the 
window size. This allows the UAna to be upchucked at 
any point in time to produce UAnaBlobs that hold the 
results of the transformation. Because UAnaBlobs are 
time-aware, the system can automatically and safely 
reuse analysis results for .upchuck() requests made at 
the same ChucK time. An example dataflow pipeline is 
depicted in Figure 9.  

 

Figure 9. Underlying pipeline of a generic hybrid synthesis/analysis system. 



  
 

6. POTENTIAL APPLICATIONS 

6.1. Audio Analysis Research and Pedagogy 

One of the primary strengths of our ChucK-based 
analysis system is that programmer can specify analysis 
task with sample-synchronous precision. This allows 
for the exact scheduling of operations, and also allows 
any parameter to be changed at any time. For example, 
for FFT analysis, it's possible to conduct FFT analysis 
with dynamically changing window, hop and FFT sizes. 
With concurrency, programming precise analysis and 
synthesis processes is straightforward. This has 
potential benefits in prototyping systems for audio 
compression, multi-rate spectral estimation and 
tracking, and representing complex analysis systems as 
smaller, simpler, concurrent components. 

Due to the precise and concise syntax of the language 
support for analysis, and because of ChucK’s support 
for on-the-fly programming [26], another potentially 
useful application is fast prototyping for new algorithms 
in analysis and hybrid analysis and synthesis systems. 
Using the tenets of ChucKian on-the-fly programming, 
it is possible to craft programs whose fundamental 
structure and logic can be altered in real-time for rapid 
turn-around in experimenting with new ideas.  

Additionally, since the programming model is such 
that the code can accurately and completely specify an 
algorithm in terms of dataflow and timing, ChucK 
source code can serve as a clear and compact vehicle for 
communicating new ideas and algorithms within a 
community, or perhaps to document how part of an 
algorithm works. It seems potentially useful (and fun) 
to be able to exchange the latest ideas as code, and to 
then be able to immediately test it and make new 
modifications.  

The deterministic and concise nature of the system 
can also facilitate education, allowing teachers to 
demonstrate analysis algorithms clearly, while the rapid 
prototyping can provide a potentially more “online” and 
“by-example” approach to teaching concepts in and out 
of the classroom. This approach also has the advantage 
of staying in a single environment, without having to 
require students (and graders!) to negotiate multiple 
languages and programming paradigms. Lastly, the 
programming model is both high-level and detailed (i.e., 
it exposes low-level control) at the same time. As 
demonstrated by earlier examples, the representation 
provides direct control over analysis parameters and 
data, allowing students to immediately and accurately 
experiment with these concepts. 

6.2. Synthesis and Performance 

Because both analysis and synthesis components work 
and interact in the same language, it can be 
straightforward to prototype and create hybrid systems 
for analysis-driven synthesis. For example, ChucK can 
serve as a useful workbench for experimenting with 
systems for data-driven concatenative synthesis [22], 
feature-based synthesis [9], and audio mosaics [11]. 
Also, one can imagine implementing analysis tasks such 

as spectral modelling synthesis [21], onset detection, 
instrument identification, beat-tracking, and others as 
building blocks for exciting new synthesis and 
performance systems directly in ChucK. Furthermore, 
the ability to integrate on-the-fly programming of 
analysis and learning techniques into a synthesis 
environment holds the potential of enabling new and 
interesting musical applications. 

7. FUTURE WORK AND CONCLUSION 

Next steps in this work include implementing additional 
UAnae to further enable rapid prototyping with basic 
analysis modules. Further development on analysis 
objects distributed with ChucK will continue to attend to 
the balance between low programming overhead and 
flexible control. In general, we favor simpler and more 
general modules over ones intended for specific tasks, 
as we hope to make it easy to create highly customized 
systems directly in ChucK. Another exciting vein of 
work is to investigate new language-level solutions to 
supporting real-time and on-the-fly learning and 
classification. 

In conclusion, we have introduced a new 
programming model for specifying and controlling 
analysis and for working with hybrid analysis/synthesis 
systems. We presented our notion of a Unit Analyzer, 
as well as a means for understanding how general 
analysis tasks may be accomplished by a network of 
such objects. Strengths of the model include a clear 
representation of dynamic dataflow between and among 
analysis and synthesis components, and a precise 
mechanism for specifying and understanding how 
analysis is performed in time. Furthermore, the syntax 
exposes low-level control in a concise and 
straightforward manner. 

Our new ChucK system offers a single platform in 
which programmers can craft new analysis algorithms in 
the language, perform analysis-informed synthesis in 
real-time, and rapidly prototype novel audio algorithms. 
The precision, clarity, and on-the-fly nature of analysis 
and synthesis in ChucK, we hope, can lead to exciting 
new applications. Finally, we hope this model can 
provide a different way of thinking about programming 
analysis (and synthesis) for research, performance, and 
pedagogy. 
 
ChucK is open-source and freely available: 
 

http://chuck.cs.princeton.edu/ 
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