
In Proceedings of the 2004 International Conference on New Interfaces for Musical Expression (NIME)

On-the-fly Programming: Using Code as an
Expressive Musical Instrument

Ge Wang
Department of Computer Science

Princeton University
Princeton, NJ, U.S.A.

gewang@cs.princeton.edu

Perry R. Cook
Department of Computer Science (also Music)

Princeton University
Princeton, NJ, U.S.A.

prc@cs.princeton.edu

ABSTRACT
On-the-fly programming is a style of programming in which the
programmer/performer/composer augments and modifies the
program while it is running, without stopping or restarting, in
order to assert expressive, programmable control at runtime.
Because of the fundamental powers of programming languages,
we believe the technical and aesthetic aspects of on-the-fly
programming are worth exploring.

In this paper, we present a formalized framework for on-the-fly
programming, based on the ChucK synthesis language, which
supports a truly concurrent audio programming model with
sample-synchronous timing, and a highly on-the-fly style of
programming. We first provide a well-defined notion of on-the-
fly programming. We then address four fundamental issues that
confront the on-the-fly programmer: timing, modularity,
conciseness, and flexibility. Using the features and properties of
ChucK, we show how it solves many of these issues. In this new
model, we show that (1) concurrency provides natural modularity
for on-the-fly programming, (2) the timing mechanism in ChucK
guarantees on-the-fly precision and consistency, (3) the Chuck
syntax improves conciseness, and (4) the overall system is a
useful framework for exploring on-the-fly programming. Finally,
we discuss the aesthetics of on-the-fly performance.
Keywords
On-the-fly programming, code as interface, concurrency, timing,
synthesis, concurrent audio programming, synchronization, real-
time, compiler, virtual machine.

1. INTRODUCTION
Due to their fundamental expressive power, programming
languages and systems play a pivotal role in the composition,
performance, and experimentation of computer audio and electro-
acoustic music. For the most part, however, the design and
writing of computer music programs have been limited to off-line
development and preparation, leaving only the finished program
to "go live". Thus, the gamut of runtime possibility is prescribed
by the functionalities that are pre-determined and programmed
ahead of time.

An on-the-fly programmable system provides the ability to
write/modify, compile, execute new/existing code, and then
integrate it into a program while it is running, with precise timing
and synchronization. The goal of on-the-fly programming is to
enable programmers/performers/composers to actively modify
their programs on-line without having to stop, code, and restart.
For example, performers could add/change modules in their
synthesis or composition programs, or modify mappings to their

controllers during a live performance. Similarly, composers can
experiment with their programs on-line, modifying synthesis
components, shaping or perfecting a sound, or changing
compositional elements, without having to restart.

Figure 1. On-the-fly programmers in session.

The features of the programming tool inevitably shape both the
means by which tasks are implemented as well as the end product.
By bringing the power and expressiveness of the programming
language into runtime, an on-the-fly programming system has the
potential to fundamentally enhance the real-time interaction
between the performer/composer and the systems they create and
control. Code becomes a real-time, expressive instrument. We
believe that such a potential is worth exploring.

In this work, we define on-the-fly programming and provide a
formal programming model based on ChucK [12], leveraging its
properties of timing and concurrency, as well as the ChucK
virtual machine. In addition, we discuss an open on-the-fly
programming aesthetic. The rest of this paper is organized as
follows. Section 2 defines on-the-fly programming and identifies
some of the central issues that an on-the-fly programming system
should address, and also discusses on-the-fly elements found in
existing programming languages. Section 3 provides an overview
of the features and properties of ChucK that are relevant to on-
the-fly programming. Based on these features and properties,
Section 4 defines a formal framework and programming model for
on-the-fly programming. We show how the properties of ChucK
are preserved and extended in the new model. Section 5 uses the
on-the-fly model and discusses an aesthetic for live performance.
Finally, we conclude and discuss future work in Section 6.

2. BACKGROUND
Elements of on-the-fly programming have existed in computer
music systems and languages in various forms. Some performers
have incorporated various runtime programmable aspects in their

In Proceedings of the 2004 International Conference on New Interfaces for Musical Expression (NIME)

systems and methodologies. However, there hasn’t been a
formalized framework or a genuinely on-the-fly system that
defines and addresses all the issues of runtime programmability.

2.1 Definition
In order to discuss the technical and aesthetic aspects of on-the-
fly programming, we first provide a well-defined notion of what it
is. In this context of this study, we define on-the-fly
programming to consist of all the following elements:

• First executing an existing program, or possibly an empty
program – we will call this P.

• Subsequently writing new code segment Q in a programming
language, and adding it (possibly with type-checking and
compilation) to the existing program P, forming program P'.
Specifically, by “adding Q to P”, we mean (1) Q now runs in
the address space of P, potentially sharing data, and (2) there is
a strong notion of temporal correspondence between Q and P,
such that Q can access the timing of P and also synchronized
with P. We shall see an example of this in Section 4.

• Modifying parts of the program P while it is executing. This is
general enough to include anything that modifies the program
structure or logic. We intentionally leave this open, for each
system may have its own way of modifying the program. We
will see that in ChucK, the program can be modified via
replacement of concurrent, modular code blocks using the
internal timing and virtual machine interface.

2.2 Challenges
In order to bring the power and general expressiveness of
programming languages into on-the-fly programming, several
fundamental challenges must be addressed. We have identified
the following issues:

• Modularity – code sections must be modular so the
programmer can reason about them or modify them
independently. Furthermore, the augmented code must work
together in the same address space and namespace.

• Timing – there must be a strong consistency and notion of time
and timing between the existing and new parts of the program.
Sequential on-the-fly code segments need to start and stop with
precision.

• Conciseness and manageability – given the substantial time
constraints, we ask: how can ideas be expressed concisely in
code? How do we reason about time and data flow easily?

• Flexibility – how flexible is the system? Does it allow
programmers to take advantage of the expressive power of
programming languages in a real-time setting?

Taking these challenges into account, and using the definition
provided, we next evaluate some existing languages and systems.
In Sections 3 and 4, we will show how features of ChucK provide
a solution to each of these challenges.

2.3 Existing Languages and Systems
Ever since Music I [6], there has since been many computer music
programming languages and systems. [5, 4, 3, 9, 6] Many of
these, especially the earlier ones were designed to operate in a
non-real-time manner. They are interesting and influential to

more modern languages, but are not directly relevant to this study
of on-the-fly programming. Additionally, performers have used
runtime programmable elements during live performance and/or
rehearsal. Examples go back as far as Jim Horton, Tim Perkis, and
John Bischoff of The League of Automatic Composers, who
tweaked live electronics with microcomputers (KIM’s) during
performance, and George Lewis, as well as the network group
The Hub, who used languages like FORTH to modify their
systems online, to more recent laptop computer musicians who
construct and use various on-the-fly tools, including command-
line, shell scripts, and homemade software tools [2].
Of the real-time computer music languages, on-the-fly
programming elements can be found in Max [10] and Pure Data
[11], which allow programmers to alter parts of their patch while
it is running. However, data-flow (unit generators and patches) is
easy to represent whereas timing, in general, is significantly more
difficult to discern and manipulate. Also, there are no
mechanisms for programming smooth transitions when
connecting sub-patches. Finally, the programming semantic can
prove to be rigid when trying to incrementally add new logic to
existing patches and modules.
SuperCollider [8], with its client/server architecture allows for
synthesis patches to be compiled/interpreted on the client and sent
to the server, where they can form a network of language-neutral
synthesis elements, on-the-fly. However, there lacks a formal
language-level framework (in addition to parameters to unit
generators) for describing timing across all parts of the program
as well as for exerting low-level timing control.

3. CHUCK OVERVIEW
ChucK is designed to be a concurrent, on-the-fly audio
programming language [12]. It is not based on a single existing
language but built from the ground up. It is strongly-typed and
strongly-timed, and runs over a virtual machine with a native
audio engine and a user-level scheduler. Several features of
ChucK directly support/encourage on-the-fly programming:

• A straightforward way to connect data-flow / unit generators.
• A sample-synchronous timing mechanism that provides a

consistent and unified view of time. Timing is embedded
directly in the program flow, making ChucK programs easy to
maintain and reason about. Data-flow is fundamentally
decoupled from time.

• A cooperative multi-tasking, concurrent programming model
based on time that allows programmers to add concurrency
easily and scalably. Synchronization is accurately and
automatically derived from the timing mechanism.

• Multiple, simultaneous, arbitrary, and dynamically
programmable control rates via the timing mechanism and
concurrency.

• A compiler and virtual machine that run in the same process,
both accessible from within the language.

As a result, ChucK provides a programming model that solves
several problems in computer music programming: representation,
level of control of data-flow and time, and concurrency. We
summarize the features and properties of ChucK in the context of
these areas. In doing so, we lay the foundation for describing the
semantics of the on-the-fly programming model in Section 4.

In Proceedings of the 2004 International Conference on New Interfaces for Musical Expression (NIME)

3.1 Representation
Representation deals with the elegant mapping of audio concepts
to syntactical and semantic constructs in the language. An
effective representation should also be straightforward to reason
about and maintain. ChucK addresses this problem in both its
syntax and semantics. The syntax provides a means to specify
data-flow; the timing semantics specify when computations occur.
In this way, both high-level manipulation and low-level control is
achieved. We discuss the syntactical portion here, and reserve the
discussion about timing semantics for Section 3.2.

At the heart of the syntax is the ChucK operator: a group of
related operators (=>, ->) that denote interconnection and
direction of data flow. A unit generator (ugen) patch can be
quickly and clearly constructed by using => to connect ugen’s in
a strongly ordered, left-to-right manner (Figure 2). By default,
=> only deals with data-flow, leaving the issues of time to the
timing mechanism. Parameters to the unit generators can be
modified using the single ChucK operator, ->.

(a)

noise => filter => dac;
(b)

Figure 2. (a) A noise-filter patch using three unit
generators. (b) ChucK statement representing the patch.
dac is the global sound output variable.

3.2 Level of Control
The level of control and abstraction provided by the language
shapes what can be done with the language and how it is used. In
the context of audio programming, we are concerned not only
with control over data but also over time. The latter deals with
control rates and the manner in which time is manipulated and
reasoned about in the language. Thus, the question is: what is the
appropriate level and granularity of control for data and time?

The solution in ChucK is to provide many levels and granularity
of control over data and time. The key to having a flexible level
of control lies in the ChucK timing mechanism, which consists of
two parts. First, time (time) and duration (dur) are native types
in the language. Time refers in a point in time whereas duration
is a finite amount of time. Basic duration values are provided by
default: samp (the duration between successive samples), ms
(millisecond), second, minute, hour, day, and week.
Additional durations can be inductively constructed using
arithmetic operations on existing time and duration values.

Secondly, there is a special keyword now (of type time) that
holds the current ChucK time, which starts from 0 (at the
beginning of the program execution). now is the key to reasoning
about and manipulating time in ChucK. Programs can read the
globally consistent ChucK time by reading the value of now.
Also, by assigning time values or adding duration values to now
causes time to advance. As an important side effect, this
operation causes the current process to block (allowing audio to
compute) until now actually reaches the desired point in time
(Figure 3). We call this synchronization to time.

// construct a unit generator patch
noise => biquad => dac;

// loop: update biquad every 100 ms
while(true)
{
 // sweep biquad center frequency
 500 + 300 * sin(now*FC) -> biquad.freq;

 // advance time by 100 ms
 100::ms +=> now;
}

Figure 3. A control loop. The -> ChucK operator is
used to change biquad’s frequency control parameter.
The last line of the loop causes time to advance by 100
milliseconds – this can be thought of as the control rate.

This mechanism provides a consistent, sample-synchronous view
of time and embeds timing control directly in the code. This
strong correspondence between timing and code makes programs
easier to write and maintain. Data-flow is decoupled from time.
Furthermore, the timing mechanism allows for the control rate to
be fully throttled by the programmer – audio rates, control rates,
and high-level musical timing are unified under the same timing
mechanism.

3.3 Concurrent Audio Programming
Sound and music are often the simultaneity of many precisely
timed entities and events. There have been many ways devised to
represent simultaneity [9, 4, 5] in computer music languages.
However, until ChucK, there hasn't been a truly concurrent and
precisely timed programming model for audio. This aspect of the
language is a powerful extension of the timing mechanism and is
essential to our model of on-the-fly programming.

The intuitive goal of concurrent audio programming is
straightforward: to write concurrent code that shares data as well
as time (Figure 4).

Figure 4. A unit generator patch and three concurrent
paths of execution at different control rates.

ChucK introduced the concepts of shreds and the shreduler. A
shred is a concurrent entity like a thread [1]. But unlike threads, a
shred is a deterministic shred of computation, synchronized by
time. Each of the concurrent paths of execution in Figure 4 can
be realized by a shred. They can reside in separate source files or
be dynamically spawned (sporked) from a single parent shred.

The key insight to understanding concurrency in ChucK is that
shreds are automatically synchronized by time. Two independent
shreds can execute with precise timing relative to each other and
the virtual machine, without any knowledge of each other. This is
a powerful mechanism for specifying and reasoning about time
locally and globally in a synthesis program. Furthermore, it
allows for any number of different control rates to execute
concurrently and accurately. ChucK concurrency is orthogonal in

White
Noise

BiQuad
Filter

DAC

sbuf => biquad => dac;

0 => float t;
while(true){
 sin(t*FC)
 -> sbuf;
 1 +-> t;
 1::samp +=> now;
}

while(true)
{
 // sweep
 next_f() ->
 biquad.freq;
 80:ms +=> now;
}

while(true)
{
 // poll
 sensor[8]
 => listener;
 1::sec +=> now;
}

In Proceedings of the 2004 International Conference on New Interfaces for Musical Expression (NIME)

that programmers can add concurrency without modification to
existing code. It is also scalable, because shreds are implemented
as efficient user-level constructs in the ChucK Virtual Machine.
Indeed, this mechanism is used in Section 4 to synchronize on-
the-fly program modules.

3.4 ChucK Virtual Machine
ChucK code is compiled and executed in the ChucK Virtual
Machine, which consists of an on-the-fly compiler, a virtual
instruction interpreter, a native audio engine, the shreduler, and a
I/O manager (Figure 5). The on-the-fly compiler, the shreduler,
and the virtual machine itself can be accessed as global objects
from within the language. For example, a shred can request the
compiler to parse and type-check a piece of code dynamically,
and then shredule the code to execute as part of the same process.
This mechanism, along with the timing and concurrency form the
foundation for our on-the-fly programming model.

Figure 5. The ChucK Virtual Machine runtime.

4. THE ON-THE-FLY MODEL
In this section, we describe a formal on-the-fly programming
model, based on the features of ChucK. We do so in two parts:
external and internal semantic. We reason about key properties
in the model and present an example. We show that just as
concurrency in ChucK is a natural extension of the timing
mechanism, we can leverage the timing mechanism and
concurrency to address the challenges of on-the-fly programming.

4.1 Operational Semantics
4.1.1 External Interface
The on-the-fly programming model, at the high-level, can be
described in the following way. A ChucK virtual machine begins
execution, generating samples (as necessary), keeping time, and
waiting for incoming shreds. ChucK shreds can be assimilated
on-the-fly into the virtual machine, sharing the memory address
space and global timing mechanism, and is said to be active.
Similarly, an active shred can be dissimilated, or removed from
the virtual machine, or it can be suspended or be replaced by
another shred. This interface is designed to be simple, and
delegates the actual timing and synchronization logic to the code
within the shred (discussed in Section 4.1.2), leaving this
flexibility to the programmer.

The high level commands to the external interface are listed
below. They can be invoked on the command line, in ChucK
programs (as functions calls to the machine and compiler
objects), over the network, via customized graphical interfaces, or
by other appropriate means.

• Execute – begins a new instance of the virtual machine in a
new address space. Typically, this operation is used at the
beginning of the session. Multiple instances of the virtual
machine can coexist. The shreduler begins to keep track of time.

• Add – type-checks and compiles a new shred (from a ChucK
source file, a string containing ChucK code, or a pre-compiled
shred). If there are no compilation errors, the shred is allocated
and sporked in the virtual machine with an unique ID. A new
virtual stack is allocated, and the shred is shreduled immediately
to execute from the beginning. When add fails due to compilation
errors, the virtual machine continues to run as before while the
programmer can attempt to debug, correct, and add the code.

• Remove – removes a shred by ID or name from the virtual
machine. The shred's exit point function (if defined) is invoked
and the shred and relevant child objects are garbage collected.
• Suspend – similar to remove, except the shred's suspend()
function (if defined) is invoked, and the shred is removed by the
shreduler and placed on the suspended list.
• Resume – resumes a suspended shred, calls its resume()
function and places it in the shreduler's ready-to-run list. The
shred will resume execution at the suspended point in the code.
• Replace – invokes a remove operation followed by an add. An
option exists for making the operation atomic.
• Status – queries the status of the virtual machine for the
following types of information: (1) a list of active/suspended
shreds ID's, source/filename, duration since assimilation (spork
time), and (2) information on virtual machine state: currently
executing shred, shreduler timeline, and CPU / VM usage by
various parts of the system.

For example, Figure 6 shows code that adds, replaces, and
removes two shreds using separate methods.

start virtual machine with an “infinite time-loop”
shell%> chuck --start `while(true) 1::second +=> now;`
add foo.ck
shell%> chuck --add foo.ck
replace shred 0 with bar.ck
shell%> chuck --replace 0 bar.ck
remove all shreds
shell%> chuck --remove all

(a)
// add shred from file "foo.ck"
machine.add("foo.ck") => shred foo;
// advance time by 500 milliseconds
500::ms +=> now;
// replace "foo" with "bar.ck"
machine.replace(foo, "bar.ck") => shred bar;
// advance time by 2 seconds
2::second +=> now;
// remove "bar"
machine.remove(bar);

(b)

Figure 6. Two examples of using the runtime code
management interface: (a) from a command-line shell,
(b) from within a shred, which has timing control.

Execution
Unit

Shreduler

Audio
Engine

I/O
Manager

shred shred

ChucK process

On-the-fly
compiler

ChucK code

shred

In Proceedings of the 2004 International Conference on New Interfaces for Musical Expression (NIME)

The "code-runs-code" feature is powerful because it allows a
program to self-manage shreds on-the-fly with sample-
synchronous precision. Users can also assimilate shreds that
systematically add (potentially many) additional shreds, each with
precise timing. Because the compiler and the virtual machine run
in the same process, much of the intermediate processing can be
eliminated. Finally, the ability to evaluate strings as code at
runtime opens the possibility for self-generating on-the-fly
programs with fast compilation-to-runtime response.

The status feedback is helpful for quickly surveying the state of
the system and is particularly useful in an on-the-fly setting
because it can identify hanging or non-cooperative shreds. For
example, if the system runs a shred containing an infinite loop, it
will fail to yield and cause the virtual machine execution unit to
hang indefinitely. This type of behavior cannot be reliably
detected at compile time, as the Halting Problem demonstrates.
However, the on-the-fly programmer can identify and remove
misbehaving shreds from the virtual machine manually, resulting
in minimal interruption to the performance or session. While this
recovery mechanism is far from perfect, it is far more
advantageous than killing the system and restarting. Additionally,
it can help the composer/performer tune the system by identifying
shreds that are taking too much CPU time and optimize them
individually.

This high-level semantic uses concurrent shreds as modules and
provide a means of managing them. However, this interface alone
is not adequate for specifying timing between incoming and
existing modules. This brings us to the internal timing semantic
of the on-the-fly programming model.

4.1.2 Internal Semantics
The internal semantics deal with the problem of precise timing
between on-the-fly modules. The goal is to provide a consistent
and accurate mechanism for shreds to synchronize with each
other. In our model, the semantics are natural extensions of the
ChucK timing mechanism. By querying and manipulating time
using the special variable now, the programmer can determine the
current time, and specify how the code should respond.

By the properties of ChucK timing and concurrency: (1) now
always holds the current ChucK time, (2) changing the value of
now advances time in ChucK and has the side effect of blocking
the current shred (allowing audio and other shreds to compute)
until now holds the value that was assigned to it, (3) if t is of
type time, t => now advances time until t equals now, (4) if d
is of type dur (a duration), d +=> now advances time by d. We
illustrate this below with some common code segments that
synchronize to time.

• Let time pass for some duration (in this case 10 seconds)
now + 10::second => time later;
later => now;

// or simply:

10::second +=> now;

• Synchronize to some absolute time t
t => now;

• Synchronize to absolute time t or later
if(t < now) t => now;

• Synchronize to the beginning of next period of duration T
120::ms => dur T; // period to synchronize to
T – (now % T) +=> now; // advance time by remainder

• Synchronize to the beginning of next period, plus offset D
T – (now % T) + D +=> now;

• Start as soon as possible
// no code necessary

The semantic allows programmers to precisely specify many
more timing and synchronization behaviors. These statements
can be placed to impose timing at arbitrary points in the program
flow. For the purpose of initial time-based synchronizations in
on-the-fly programming, they may be placed near the beginning
of a shred to synchronize to time before moving on.

4.2 An On-the-fly Example
Using the operational semantics described in Section 4.1, we
construct a simplified example: phasing on-the-fly. We write
three shreds, each to trigger some sound at a slightly different
rate, and we assimilate them one by one, with time-based
synchronizations specified for the second and third shreds. The
code for the three shreds and the commands to add them are
shown in Figure 7. (With copy/paste, this can be realized in
roughly 45 seconds.)

(a)

shell %> chuck --start left.ck
shell %> chuck --add middle.ck
shell %> chuck --add right.ck

(b)
Figure 7. (a) Code for three concurrent shreds, the middle
shred synchronized to the cycle of the left shred, and the right
shred synchronized to cycle of the left shred offset by 150
milliseconds. (b) Shell command to add them on-the-fly.

4.3 Properties
Recall the challenges we defined in Section 2.2: modularity,
timing, conciseness, and flexibility. Using the features of ChucK
and the framework we discussed, we briefly comment on the
effectiveness of this model.

Concurrency provides a modular approach to breaking up the
program into manageable pieces that can be added, remove, and
replaced, and also synchronized to each other precisely, using the
timing mechanism. This framework preserves the properties of
timing in ChucK and extends them to an on-the-fly setting
unifying high-level (musical), low-level (control rates), and inter-
modular (shred synchronization) timing into one system. Finally,
embedding the timing specifications directly in the languages and
using the ChucK operator leads to cleaner and more maintainable
code, which a runtime programmable system vitally demands.

“a”=>sndbuf=>dac;

// first to run
// no need synch

while(true){
 // trigger snd
 0 -> sndbuf.pos;
 300::ms +=> now;
}

“b”=>sndbuf=>dac;

300::ms => dur T;
T–(now%T) +=>now;

while(true){
 // trigger snd
 0 -> sndbuf.pos;
 400::ms +=> now;
}

“c”=>sndbuf=>dac;

300::ms =>dur T;
T – (now%T) +
 150::ms +=> now;

while(true){
 0 -> sndbuf.pos;
 500::ms +=> now;
}

In Proceedings of the 2004 International Conference on New Interfaces for Musical Expression (NIME)

5. AN OPEN ON-THE-FLY AESTHETIC
Our on-the-fly aesthetic (Figure 8) is one where the process of on-
the-fly programming is conveyed to the audience. It addresses
two important issues in computer music performance. First, it can
be argued that many technical and aesthetic intentions are often
difficult to discern in performance where they don't have to be or
shouldn't be. The on-the-fly programming aesthetic help address
this concern, for it provides a channel for the audience to see both
the intention and the results. Additionally, it does this
orthogonally, without necessarily depending on or interfering
(usually) with the nature of the performance. Thus we call it an
open aesthetic.

(2-performer schematic)

(performance)

Figure 8. An on-the-fly performance for two laptops
and two laptop projectors. Note the two projections in
the background. Superimposed are two projected screen
shots from the performance. The schematic can be
extended to any number of performers.

The second problem that the on-the-fly aesthetic addresses is the
issue of virtuosity in computer music. On-the-fly programming
provides a platform where the performer is able to render various
types of mastery and creativity that can be immediately
appreciated, or at least perceived. While typing speed may not
inspire, the general expressive power of programming languages
opens unlimited possibilities for clever approaches and beautiful
design. The timing semantic makes ChucK code straightforward
to follow, allowing the audience to more quickly and easily
appreciate the design and construction of on-the-fly programs.

6. CONCLUSIONS AND FUTURE WORK
We have outlined some central challenges in on-the-fly
programming, and presented a framework and an aesthetic for
addressing them. The ChucK virtual machine provides a simple,
yet powerful set of high-level operations to manage shreds

externally, and allows the program and incoming shreds to
manage timing and synchronization internally in the code. The
concurrency model in ChucK gives a natural boundary between
on-the-fly modules of the program. The timing mechanism can
be use in the same manner to synchronize the incoming code to
the rest of the program with sample-precision. Additionally, the
syntax of the ChucK operator and the strong correspondence
between timing and program flow help to design and reason about
code in a time-constrained, on-the-fly setting. In its entirety, this
model yields a flexible and powerful tool to create, manage, and
further explore on-the-fly programs.
While this framework has many desirable properties, it still
unpolished and unwieldy in many respects, because coding
inherently takes time. Future work may look into programming
environments that understands the deep structure of the program
being written and facilitates writing and debugging on-the-fly.
The performance aesthetic may explore visualizations of program
state – in addition to code. Also, it would be interesting to
investigate reducing the modular granularity, allowing finer
pieces of code to be runtime modified.

http://on-the-fly.cs.princeton.edu/

ACKNOWLEDGMENTS
We wish to sincerely thank Andrew Appel, Brian Kernighan, Ari
Lazier, Nick Collins and the authors of [2] for their support. Also
thanks to the anonymous reviewers for their helpful comments.

REFERENCES
[1] Birrell, A.D. “An Introduction to Programming with Threads” Tech.

Rep. SRC-035, Digital Equipment Corporation, 1989.
[2] Collins, N., A. McLean, J. Rohrhuber, A. Ward. 2004. "Live Coding in

Laptop Performance." (To appear in Organized Sound).
[3] Cook, P. R. and G. Scavone. 1999. "The Synthesis Toolkit (STK)." In

Proceedings of the International Computer Music Conference.
International Computer Music Association, pp. 164-166.

[4] Dannenberg, R. B., Desain, P., & Honing, H. 1997. “Programming
Language Design for Music.” In G. De Poli, A. Picialli, S. T. Pope, & C.
Roads (eds.), Musical Signal Processing. Lisse: Swets & Zeitlinger.

[5] Loy, G. and C. Abbott. 1985. "Programming Languages for Computer
Music Synthesis, Performance, and Composition." Computing Surveys
17(2):235-265.

[6] Lyon, E. 2002. “Dartmouth Symposium on the Future of Computer
Music Software: A Panel Discussion.” Computer Music Journal.
26(4):13-30.

[7] Mathews, M. V. 1969. The Technology of Computer Music. Cambridge,
Massachusetts: MIT Press.

[8] McCartney, J. 2002. "Rethinking the Computer Music Programming
Language: SuperCollider." Computer Music Journal. 26(4):61-68.

[9] Pope, S. T. 1993. "Machine Tongues XV: Three Packages for Software
Sound Synthesis." Computer Music Journal. 17(2):23-54.

[10] Puckette, M. 1991. "Combining Event and Signal Processing in the
MAX Graphical Programming Environment." Computer Music Journal.
15(3):68-77.

[11] Puckett, M. 1996. “Pure Data.” In Proceedings of International
Computer Music Conference. International Computer Music
Association, 269-272.

[12] Wang G. and Cook, P.R. 2003. “ChucK: A Concurrent, On-the-fly Audio
Programming Language.” In Proceedings of International Computer
Music Conference. International Computer Music Association. 219-226.

