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ABSTRACT 
On-the-fly programming is a style of programming in which the 
programmer/performer/composer augments and modifies the 
program while it is running, without stopping or restarting, in 
order to assert expressive, programmable control at runtime.   
Because of the fundamental powers of programming languages, 
we believe the technical and aesthetic aspects of on-the-fly 
programming are worth exploring. 

In this paper, we present a formalized framework for on-the-fly 
programming, based on the ChucK synthesis language, which 
supports a truly concurrent audio programming model with 
sample-synchronous timing, and a highly on-the-fly style of 
programming.  We first provide a well-defined notion of on-the-
fly programming.  We then address four fundamental issues that 
confront the on-the-fly programmer: timing, modularity, 
conciseness, and flexibility.  Using the features and properties of 
ChucK, we show how it solves many of these issues.  In this new 
model, we show that (1) concurrency provides natural modularity 
for on-the-fly programming, (2) the timing mechanism in ChucK 
guarantees on-the-fly precision and consistency, (3) the Chuck 
syntax improves conciseness, and (4) the overall system is a 
useful framework for exploring on-the-fly programming.  Finally, 
we discuss the aesthetics of on-the-fly performance. 
Keywords 
On-the-fly programming, code as interface, concurrency, timing, 
synthesis, concurrent audio programming, synchronization, real-
time, compiler, virtual machine. 

1. INTRODUCTION 
Due to their fundamental expressive power, programming 
languages and systems play a pivotal role in the composition, 
performance, and experimentation of computer audio and electro-
acoustic music.  For the most part, however, the design and 
writing of computer music programs have been limited to off-line 
development and preparation, leaving only the finished program 
to "go live".  Thus, the gamut of runtime possibility is prescribed 
by the functionalities that are pre-determined and programmed 
ahead of time. 

An on-the-fly programmable system provides the ability to 
write/modify, compile, execute new/existing code, and then 
integrate it into a program while it is running, with precise timing 
and synchronization.  The goal of on-the-fly programming is to 
enable programmers/performers/composers to actively modify 
their programs on-line without having to stop, code, and restart.  
For example, performers could add/change modules in their 
synthesis or composition programs, or modify mappings to their 

controllers during a live performance.  Similarly, composers can 
experiment with their programs on-line, modifying synthesis 
components, shaping or perfecting a sound, or changing 
compositional elements, without having to restart. 

 
Figure 1. On-the-fly programmers in session. 

The features of the programming tool inevitably shape both the 
means by which tasks are implemented as well as the end product.  
By bringing the power and expressiveness of the programming 
language into runtime, an on-the-fly programming system has the 
potential to fundamentally enhance the real-time interaction 
between the performer/composer and the systems they create and 
control.  Code becomes a real-time, expressive instrument.  We 
believe that such a potential is worth exploring. 

In this work, we define on-the-fly programming and provide a 
formal programming model based on ChucK [12], leveraging its 
properties of timing and concurrency, as well as the ChucK 
virtual machine.  In addition, we discuss an open on-the-fly 
programming aesthetic.  The rest of this paper is organized as 
follows.  Section 2 defines on-the-fly programming and identifies 
some of the central issues that an on-the-fly programming system 
should address, and also discusses on-the-fly elements found in 
existing programming languages.  Section 3 provides an overview 
of the features and properties of ChucK that are relevant to on-
the-fly programming.  Based on these features and properties, 
Section 4 defines a formal framework and programming model for 
on-the-fly programming.  We show how the properties of ChucK 
are preserved and extended in the new model.  Section 5 uses the 
on-the-fly model and discusses an aesthetic for live performance.  
Finally, we conclude and discuss future work in Section 6. 

2. BACKGROUND 
Elements of on-the-fly programming have existed in computer 
music systems and languages in various forms.  Some performers 
have incorporated various runtime programmable aspects in their 
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systems and methodologies.  However, there hasn’t been a 
formalized framework or a genuinely on-the-fly system that 
defines and addresses all the issues of runtime programmability. 

2.1 Definition 
In order to discuss the technical and aesthetic aspects of on-the-
fly programming, we first provide a well-defined notion of what it 
is.  In this context of this study, we define on-the-fly 
programming to consist of all the following elements: 

• First executing an existing program, or possibly an empty 
program – we will call this P. 

• Subsequently writing new code segment Q in a programming 
language, and adding it (possibly with type-checking and 
compilation) to the existing program P, forming program P'.  
Specifically, by “adding Q to P”, we mean (1) Q now runs in 
the address space of P, potentially sharing data, and (2) there is 
a strong notion of temporal correspondence between Q and P, 
such that Q can access the timing of P and also synchronized 
with P.  We shall see an example of this in Section 4. 

• Modifying parts of the program P while it is executing.  This is 
general enough to include anything that modifies the program 
structure or logic.  We intentionally leave this open, for each 
system may have its own way of modifying the program.  We 
will see that in ChucK, the program can be modified via 
replacement of concurrent, modular code blocks using the 
internal timing and virtual machine interface. 

2.2 Challenges 
In order to bring the power and general expressiveness of 
programming languages into on-the-fly programming, several 
fundamental challenges must be addressed.  We have identified 
the following issues: 

• Modularity – code sections must be modular so the 
programmer can reason about them or modify them 
independently.  Furthermore, the augmented code must work 
together in the same address space and namespace. 

• Timing – there must be a strong consistency and notion of time 
and timing between the existing and new parts of the program.  
Sequential on-the-fly code segments need to start and stop with 
precision. 

• Conciseness and manageability – given the substantial time 
constraints, we ask: how can ideas be expressed concisely in 
code?   How do we reason about time and data flow easily? 

• Flexibility – how flexible is the system?  Does it allow 
programmers to take advantage of the expressive power of 
programming languages in a real-time setting? 

Taking these challenges into account, and using the definition 
provided, we next evaluate some existing languages and systems.  
In Sections 3 and 4, we will show how features of ChucK provide 
a solution to each of these challenges. 

2.3 Existing Languages and Systems 
Ever since Music I [6], there has since been many computer music 
programming languages and systems. [5, 4, 3, 9, 6]  Many of 
these, especially the earlier ones were designed to operate in a 
non-real-time manner.  They are interesting and influential to 

more modern languages, but are not directly relevant to this study 
of on-the-fly programming.  Additionally, performers have used 
runtime programmable elements during live performance and/or 
rehearsal. Examples go back as far as Jim Horton, Tim Perkis, and 
John Bischoff of The League of Automatic Composers, who 
tweaked live electronics with microcomputers (KIM’s) during 
performance, and George Lewis, as well as the network group 
The Hub, who used languages like FORTH to modify their 
systems online, to more recent laptop computer musicians who 
construct and use various on-the-fly tools, including command-
line, shell scripts, and homemade software tools [2]. 
Of the real-time computer music languages, on-the-fly 
programming elements can be found in Max [10] and Pure Data 
[11], which allow programmers to alter parts of their patch while 
it is running.  However, data-flow (unit generators and patches) is 
easy to represent whereas timing, in general, is significantly more 
difficult to discern and manipulate.  Also, there are no 
mechanisms for programming smooth transitions when 
connecting sub-patches.  Finally, the programming semantic can 
prove to be rigid when trying to incrementally add new logic to 
existing patches and modules. 
SuperCollider [8], with its client/server architecture allows for 
synthesis patches to be compiled/interpreted on the client and sent 
to the server, where they can form a network of language-neutral 
synthesis elements, on-the-fly.  However, there lacks a formal 
language-level framework (in addition to parameters to unit 
generators) for describing timing across all parts of the program 
as well as for exerting low-level timing control. 

3. CHUCK OVERVIEW 
ChucK is designed to be a concurrent, on-the-fly audio 
programming language [12].  It is not based on a single existing 
language but built from the ground up.  It is strongly-typed and 
strongly-timed, and runs over a virtual machine with a native 
audio engine and a user-level scheduler.  Several features of 
ChucK directly support/encourage on-the-fly programming: 

• A straightforward way to connect data-flow / unit generators. 
• A sample-synchronous timing mechanism that provides a 

consistent and unified view of time.  Timing is embedded 
directly in the program flow, making ChucK programs easy to 
maintain and reason about.  Data-flow is fundamentally 
decoupled from time. 

• A cooperative multi-tasking, concurrent programming model 
based on time that allows programmers to add concurrency 
easily and scalably.  Synchronization is accurately and 
automatically derived from the timing mechanism. 

• Multiple, simultaneous, arbitrary, and dynamically 
programmable control rates via the timing mechanism and 
concurrency. 

• A compiler and virtual machine that run in the same process, 
both accessible from within the language. 

As a result, ChucK provides a programming model that solves 
several problems in computer music programming: representation, 
level of control of data-flow and time, and concurrency.  We 
summarize the features and properties of ChucK in the context of 
these areas.  In doing so, we lay the foundation for describing the 
semantics of the on-the-fly programming model in Section 4. 
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3.1 Representation 
Representation deals with the elegant mapping of audio concepts 
to syntactical and semantic constructs in the language.  An 
effective representation should also be straightforward to reason 
about and maintain.  ChucK addresses this problem in both its 
syntax and semantics.  The syntax provides a means to specify 
data-flow; the timing semantics specify when computations occur.  
In this way, both high-level manipulation and low-level control is 
achieved.  We discuss the syntactical portion here, and reserve the 
discussion about timing semantics for Section 3.2.   

At the heart of the syntax is the ChucK operator: a group of 
related operators (=>, ->) that denote interconnection and 
direction of data flow.  A unit generator (ugen) patch can be 
quickly and clearly constructed by using => to connect ugen’s in 
a strongly ordered, left-to-right manner (Figure 2).  By default,  
=> only deals with data-flow, leaving the issues of time to the 
timing mechanism.  Parameters to the unit generators can be 
modified using the single ChucK operator, ->.   

 

 

(a) 
 

noise => filter => dac; 
(b) 

Figure 2. (a) A noise-filter patch using three unit 
generators.  (b) ChucK statement representing the patch.  
dac is the global sound output variable. 

3.2 Level of Control 
The level of control and abstraction provided by the language 
shapes what can be done with the language and how it is used.  In 
the context of audio programming, we are concerned not only 
with control over data but also over time.  The latter deals with 
control rates and the manner in which time is manipulated and 
reasoned about in the language.  Thus, the question is: what is the 
appropriate level and granularity of control for data and time? 

The solution in ChucK is to provide many levels and granularity 
of control over data and time.  The key to having a flexible level 
of control lies in the ChucK timing mechanism, which consists of 
two parts.  First, time (time) and duration (dur) are native types 
in the language.  Time refers in a point in time whereas duration 
is a finite amount of time.  Basic duration values are provided by 
default: samp (the duration between successive samples), ms 
(millisecond), second, minute, hour, day, and week.  
Additional durations can be inductively constructed using 
arithmetic operations on existing time and duration values. 

Secondly, there is a special keyword now (of type time) that 
holds the current ChucK time, which starts from 0 (at the 
beginning of the program execution).  now is the key to reasoning 
about and manipulating time in ChucK.  Programs can read the 
globally consistent ChucK time by reading the value of now.  
Also, by assigning time values or adding duration values to now 
causes time to advance.  As an important side effect, this 
operation causes the current process to block (allowing audio to 
compute) until now actually reaches the desired point in time 
(Figure 3).  We call this synchronization to time. 

// construct a unit generator patch 
noise => biquad => dac; 
 
// loop: update biquad every 100 ms 
while( true ) 
{ 
    // sweep biquad center frequency  
    500 + 300 * sin(now*FC) -> biquad.freq; 
 
    // advance time by 100 ms 
    100::ms +=> now; 
} 

Figure 3.  A control loop.  The -> ChucK operator is 
used to change biquad’s frequency control parameter.  
The last line of the loop causes time to advance by 100 
milliseconds – this can be thought of as the control rate. 

This mechanism provides a consistent, sample-synchronous view 
of time and embeds timing control directly in the code.  This 
strong correspondence between timing and code makes programs 
easier to write and maintain.  Data-flow is decoupled from time.  
Furthermore, the timing mechanism allows for the control rate to 
be fully throttled by the programmer – audio rates, control rates, 
and high-level musical timing are unified under the same timing 
mechanism. 

3.3 Concurrent Audio Programming 
Sound and music are often the simultaneity of many precisely 
timed entities and events.  There have been many ways devised to 
represent simultaneity [9, 4, 5] in computer music languages.  
However, until ChucK, there hasn't been a truly concurrent and 
precisely timed programming model for audio.  This aspect of the 
language is a powerful extension of the timing mechanism and is 
essential to our model of on-the-fly programming. 

The intuitive goal of concurrent audio programming is 
straightforward: to write concurrent code that shares data as well 
as time (Figure 4). 

 

 

 

 
 

Figure 4. A unit generator patch and three concurrent 
paths of execution at different control rates. 

ChucK introduced the concepts of shreds and the shreduler.  A 
shred is a concurrent entity like a thread [1].  But unlike threads, a 
shred is a deterministic shred of computation, synchronized by 
time.  Each of the concurrent paths of execution in Figure 4 can 
be realized by a shred.  They can reside in separate source files or 
be dynamically spawned (sporked) from a single parent shred. 

The key insight to understanding concurrency in ChucK is that 
shreds are automatically synchronized by time. Two independent 
shreds can execute with precise timing relative to each other and 
the virtual machine, without any knowledge of each other.  This is 
a powerful mechanism for specifying and reasoning about time 
locally and globally in a synthesis program.  Furthermore, it 
allows for any number of different control rates to execute 
concurrently and accurately.  ChucK concurrency is orthogonal in 

White 
Noise 

BiQuad 
Filter 

DAC 

sbuf => biquad => dac; 

0 => float t; 
while( true ){ 
 sin( t*FC )   
     -> sbuf; 
 1 +-> t; 
 1::samp +=> now;
} 

while( true ) 
{ 
  // sweep 
  next_f() -> 
    biquad.freq; 
  80:ms +=> now; 
} 

while( true ) 
{ 
  // poll 
  sensor[8] 
    => listener; 
  1::sec +=> now;
} 
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that programmers can add concurrency without modification to 
existing code.  It is also scalable, because shreds are implemented 
as efficient user-level constructs in the ChucK Virtual Machine.  
Indeed, this mechanism is used in Section 4 to synchronize on-
the-fly program modules. 

3.4 ChucK Virtual Machine 
ChucK code is compiled and executed in the ChucK Virtual 
Machine, which consists of an on-the-fly compiler, a virtual 
instruction interpreter, a native audio engine, the shreduler, and a 
I/O manager (Figure 5).  The on-the-fly compiler, the shreduler, 
and the virtual machine itself can be accessed as global objects 
from within the language.  For example, a shred can request the 
compiler to parse and type-check a piece of code dynamically, 
and then shredule the code to execute as part of the same process.  
This mechanism, along with the timing and concurrency form the 
foundation for our on-the-fly programming model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  The ChucK Virtual Machine runtime. 

4. THE ON-THE-FLY MODEL 
In this section, we describe a formal on-the-fly programming 
model, based on the features of ChucK.  We do so in two parts: 
external and internal semantic.  We reason about key properties 
in the model and present an example.  We show that just as 
concurrency in ChucK is a natural extension of the timing 
mechanism, we can leverage the timing mechanism and 
concurrency to address the challenges of on-the-fly programming. 

4.1 Operational Semantics 
4.1.1 External Interface 
The on-the-fly programming model, at the high-level, can be 
described in the following way.  A ChucK virtual machine begins 
execution, generating samples (as necessary), keeping time, and 
waiting for incoming shreds.  ChucK shreds can be assimilated 
on-the-fly into the virtual machine, sharing the memory address 
space and global timing mechanism, and is said to be active.  
Similarly, an active shred can be dissimilated, or removed from 
the virtual machine, or it can be suspended or be replaced by 
another shred.  This interface is designed to be simple, and 
delegates the actual timing and synchronization logic to the code 
within the shred (discussed in Section 4.1.2), leaving this 
flexibility to the programmer. 

The high level commands to the external interface are listed 
below.  They can be invoked on the command line, in ChucK 
programs (as functions calls to the machine and compiler 
objects), over the network, via customized graphical interfaces, or 
by other appropriate means. 

• Execute – begins a new instance of the virtual machine in a 
new address space.  Typically, this operation is used at the 
beginning of the session.  Multiple instances of the virtual 
machine can coexist.  The shreduler begins to keep track of time. 

• Add – type-checks and compiles a new shred (from a ChucK 
source file, a string containing ChucK code, or a pre-compiled 
shred).  If there are no compilation errors, the shred is allocated 
and sporked in the virtual machine with an unique ID.  A new 
virtual stack is allocated, and the shred is shreduled immediately 
to execute from the beginning.  When add fails due to compilation 
errors, the virtual machine continues to run as before while the 
programmer can attempt to debug, correct, and add the code. 

• Remove – removes a shred by ID or name from the virtual 
machine.  The shred's exit point function (if defined) is invoked 
and the shred and relevant child objects are garbage collected. 
• Suspend – similar to remove, except the shred's suspend() 
function (if defined) is invoked, and the shred is removed by the 
shreduler and placed on the suspended list. 
• Resume – resumes a suspended shred, calls its resume() 
function and places it in the shreduler's ready-to-run list.  The 
shred will resume execution at the suspended point in the code. 
• Replace – invokes a remove operation followed by an add.  An 
option exists for making the operation atomic. 
• Status – queries the status of the virtual machine for the 
following types of information: (1) a list of active/suspended 
shreds ID's, source/filename, duration since assimilation (spork 
time), and (2) information on virtual machine state: currently 
executing shred, shreduler timeline, and CPU / VM usage by 
various parts of the system. 

For example, Figure 6 shows code that adds, replaces, and 
removes two shreds using separate methods.  

# start virtual machine with an “infinite time-loop” 
shell%> chuck --start `while(true) 1::second +=> now;` 
# add foo.ck 
shell%> chuck --add foo.ck 
# replace shred 0 with bar.ck 
shell%> chuck --replace 0 bar.ck 
# remove all shreds 
shell%> chuck --remove all 

(a) 
// add shred from file "foo.ck" 
machine.add( "foo.ck" ) => shred foo; 
// advance time by 500 milliseconds 
500::ms +=> now; 
// replace "foo" with "bar.ck" 
machine.replace( foo, "bar.ck" ) => shred bar; 
// advance time by 2 seconds 
2::second +=> now; 
// remove "bar" 
machine.remove( bar ); 

(b) 

Figure 6. Two examples of using the runtime code 
management interface: (a) from a command-line shell, 
(b) from within a shred, which has timing control. 
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The "code-runs-code" feature is powerful because it allows a 
program to self-manage shreds on-the-fly with sample-
synchronous precision.  Users can also assimilate shreds that 
systematically add (potentially many) additional shreds, each with 
precise timing.  Because the compiler and the virtual machine run 
in the same process, much of the intermediate processing can be 
eliminated.  Finally, the ability to evaluate strings as code at 
runtime opens the possibility for self-generating on-the-fly 
programs with fast compilation-to-runtime response. 

The status feedback is helpful for quickly surveying the state of 
the system and is particularly useful in an on-the-fly setting 
because it can identify hanging or non-cooperative shreds.   For 
example, if the system runs a shred containing an infinite loop, it 
will fail to yield and cause the virtual machine execution unit to 
hang indefinitely.  This type of behavior cannot be reliably 
detected at compile time, as the Halting Problem demonstrates.  
However, the on-the-fly programmer can identify and remove 
misbehaving shreds from the virtual machine manually, resulting 
in minimal interruption to the performance or session.  While this 
recovery mechanism is far from perfect, it is far more 
advantageous than killing the system and restarting.  Additionally, 
it can help the composer/performer tune the system by identifying 
shreds that are taking too much CPU time and optimize them 
individually. 

This high-level semantic uses concurrent shreds as modules and 
provide a means of managing them.  However, this interface alone 
is not adequate for specifying timing between incoming and 
existing modules.  This brings us to the internal timing semantic 
of the on-the-fly programming model. 

4.1.2  Internal Semantics 
The internal semantics deal with the problem of precise timing 
between on-the-fly modules.  The goal is to provide a consistent 
and accurate mechanism for shreds to synchronize with each 
other.  In our model, the semantics are natural extensions of the 
ChucK timing mechanism.  By querying and manipulating time 
using the special variable now, the programmer can determine the 
current time, and specify how the code should respond. 

By the properties of ChucK timing and concurrency:  (1) now 
always holds the current ChucK time, (2) changing the value of 
now advances time in ChucK and has the side effect of blocking 
the current shred (allowing audio and other shreds to compute) 
until now holds the value that was assigned to it,  (3) if t is of 
type time, t => now advances time until t equals now, (4) if d 
is of type dur (a duration), d +=> now advances time by d.  We 
illustrate this below with some common code segments that 
synchronize to time.  

• Let time pass for some duration (in this case 10 seconds) 
now + 10::second => time later; 
later => now; 

// or simply: 

10::second +=> now; 

• Synchronize to some absolute time t  
t => now; 

• Synchronize to absolute time t or later 
if( t < now ) t => now; 

• Synchronize to the beginning of next period of duration T 
120::ms => dur T;      // period to synchronize to 
T – (now % T) +=> now; // advance time by remainder 

• Synchronize to the beginning of next period, plus offset D 
T – (now % T) + D +=> now; 

• Start as soon as possible 
// no code necessary 

The semantic allows programmers to precisely specify many 
more timing and synchronization behaviors.  These statements 
can be placed to impose timing at arbitrary points in the program 
flow.  For the purpose of initial time-based synchronizations in 
on-the-fly programming, they may be placed near the beginning 
of a shred to synchronize to time before moving on. 

4.2 An On-the-fly Example 
Using the operational semantics described in Section 4.1, we 
construct a simplified example: phasing on-the-fly.  We write 
three shreds, each to trigger some sound at a slightly different 
rate, and we assimilate them one by one, with time-based 
synchronizations specified for the second and third shreds.  The 
code for the three shreds and the commands to add them are 
shown in Figure 7.  (With copy/paste, this can be realized in 
roughly 45 seconds.) 

 
 
 
 

 

 
(a) 

shell %> chuck --start left.ck 
shell %> chuck --add middle.ck 
shell %> chuck --add right.ck 

(b) 
Figure 7. (a) Code for three concurrent shreds, the middle 
shred synchronized to the cycle of the left shred, and the right 
shred synchronized to cycle of the left shred offset by 150 
milliseconds. (b) Shell command to add them on-the-fly. 

4.3 Properties 
Recall the challenges we defined in Section 2.2: modularity, 
timing, conciseness, and flexibility.  Using the features of ChucK 
and the framework we discussed, we briefly comment on the 
effectiveness of this model. 

Concurrency provides a modular approach to breaking up the 
program into manageable pieces that can be added, remove, and 
replaced, and also synchronized to each other precisely, using the 
timing mechanism.  This framework preserves the properties of 
timing in ChucK and extends them to an on-the-fly setting 
unifying high-level (musical), low-level (control rates), and inter-
modular (shred synchronization) timing into one system.  Finally, 
embedding the timing specifications directly in the languages and 
using the ChucK operator leads to cleaner and more maintainable 
code, which a runtime programmable system vitally demands. 

“a”=>sndbuf=>dac;
 
// first to run 
// no need synch 
 
while( true ){ 
 // trigger snd 
 0 -> sndbuf.pos;
 300::ms +=> now;
} 

“b”=>sndbuf=>dac; 
 
300::ms => dur T; 
T–(now%T) +=>now; 
 
while( true ){ 
 // trigger snd 
 0 -> sndbuf.pos; 
 400::ms +=> now; 
} 

“c”=>sndbuf=>dac;
 
300::ms =>dur T; 
T – (now%T) +    
 150::ms +=> now;
 
while( true ){ 
 0 -> sndbuf.pos;
 500::ms +=> now;
} 
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5. AN OPEN ON-THE-FLY AESTHETIC 
Our on-the-fly aesthetic (Figure 8) is one where the process of on-
the-fly programming is conveyed to the audience.  It addresses 
two important issues in computer music performance.  First, it can 
be argued that many technical and aesthetic intentions are often 
difficult to discern in performance where they don't have to be or 
shouldn't be.   The on-the-fly programming aesthetic help address 
this concern, for it provides a channel for the audience to see both 
the intention and the results.  Additionally, it does this 
orthogonally, without necessarily depending on or interfering 
(usually) with the nature of the performance.  Thus we call it an 
open aesthetic. 

 
(2-performer schematic) 

 
(performance) 

Figure 8.  An on-the-fly performance for two laptops 
and two laptop projectors.  Note the two projections in 
the background.  Superimposed are two projected screen 
shots from the performance. The schematic can be 
extended to any number of performers. 

The second problem that the on-the-fly aesthetic addresses is the 
issue of virtuosity in computer music.  On-the-fly programming 
provides a platform where the performer is able to render various 
types of mastery and creativity that can be immediately 
appreciated, or at least perceived.  While typing speed may not 
inspire, the general expressive power of programming languages 
opens unlimited possibilities for clever approaches and beautiful 
design.  The timing semantic makes ChucK code straightforward 
to follow, allowing the audience to more quickly and easily 
appreciate the design and construction of on-the-fly programs. 

6. CONCLUSIONS AND FUTURE WORK 
We have outlined some central challenges in on-the-fly 
programming, and presented a framework and an aesthetic for 
addressing them.  The ChucK virtual machine provides a simple, 
yet powerful set of high-level operations to manage shreds 

externally, and allows the program and incoming shreds to 
manage timing and synchronization internally in the code.  The 
concurrency model in ChucK gives a natural boundary between 
on-the-fly modules of the program.  The timing mechanism can 
be use in the same manner to synchronize the incoming code to 
the rest of the program with sample-precision.  Additionally, the 
syntax of the ChucK operator and the strong correspondence 
between timing and program flow help to design and reason about 
code in a time-constrained, on-the-fly setting.  In its entirety, this 
model yields a flexible and powerful tool to create, manage, and 
further explore on-the-fly programs. 
While this framework has many desirable properties, it still 
unpolished and unwieldy in many respects, because coding 
inherently takes time.  Future work may look into programming 
environments that understands the deep structure of the program 
being written and facilitates writing and debugging on-the-fly.  
The performance aesthetic may explore visualizations of program 
state – in addition to code.  Also, it would be interesting to 
investigate reducing the modular granularity, allowing finer 
pieces of code to be runtime modified. 

http://on-the-fly.cs.princeton.edu/ 
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