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ABSTRACT 
In this paper, we describe ChucK – a programming language and 
programming model for writing precisely timed, concurrent audio 
synthesis and multimedia programs.  Precise concurrent audio 
programming has been an unsolved (and ill-defined) problem.  
ChucK provides a concurrent programming model that solves this 
problem and significantly enhances designing, developing, and 
reasoning about programs with complex audio timing.  ChucK 
employs a novel data-driven timing mechanism and a related 
time-based synchronization model, both implemented in a virtual 
machine.  We show how these features enable precise, concurrent 
audio programming and provide a high degree of programmability 
in writing real-time audio and multimedia programs.  As an 
extension, programmers can use this model to write code on-the-
fly – while the program is running.  These features provide a 
powerful programming tool for building and experimenting with 
complex audio synthesis and multimedia programs. 

Categories and Subject Descriptors 
D.3.2 [Programming Languages]: Language Classifications – 
specialized application languages.  D.3.3 [Programming 
Languages]: Language Constructs and Features – Concurrent 
Programming Structures. 

General Terms 
Design, Experimentation, Languages. 

Keywords 
Programming language, audio synthesis, multimedia, 
concurrency, synchronization, signal processing, real-time, 
compiler, virtual machine. 

1. INTRODUCTION 
Time and parallelism are essential notions in audio and 
multimedia programming.   However, providing precise and yet 
clear programmatic control over time and timing is challenging.  
Existing low-level languages, such as C/C++/Java, have no 
inherent notion of time, whereas high-level languages hide timing 

from the programmer.  Additionally, supporting a concurrent 
programming model for audio synthesis and signal processing can 
be very useful but has been an unsolved challenge from both the 
language level and the system level.  Currently, no existing 
language supports precise, concurrent programming of audio.  
This fundamentally limits the way we write multimedia programs. 

ChucK is a strongly-timed, concurrent audio programming 
language[9].  Its language constructs and programming model 
presents an elegant solution to concurrent audio programming 
with sample-synchronous precision.  This fundamentally enhances 
our ability to write audio programs with complex timing.  ChucK 
was designed to the meet the following goals. 

Representation: provide a clear syntactic and semantic 
representation that captures important properties of audio 
programming paradigms. 

Timing: support precise, sample-synchronous audio timing with 
high degree of programmability. 

Concurrency: provide the ability to write modular, concurrent 
audio/multimedia programs with high precision and clarity. 

Programmability: give precedence to a high degree of 
programmatic control over timing, audio synthesis, and 
synchronization with other media (i.e. real-time graphics). 

On-the-fly Programming: use concurrency and precise timing as 
a framework to explore on-the-fly audio/multimedia programming 
(Figure 1) – to add/modify/remove parts of the program as it is 
running, opening new possibilities for runtime audio and media 
experimentation. 

 
Figure 1. On-the-fly Programming. Editing and 

compiling a program during its runtime. 

We will motivate these goals in Section 2, and discuss how 
ChucK addresses each in Section 3.  We conclude and discuss 
future directions in Section 4.  
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2. BACKGROUND 
The notion of time is inseparable from audio and multimedia 
programming – it is fundamentally ingrained into sound, music, 
and our perception of audio and visuals.  For audio, timing issues 
exist at three fundamental levels.  At the lowest level, digital 
audio must be computed and rendered at sample rate (i.e. 44100 
samples/second for CD-quality audio).  At a somewhat higher 
level, precisely timed control must be exerted (at control-rate) in 
order to synthesis audio with desired characteristics (i.e. timbres, 
frequencies, amplitude, filter properties, etc.).  Finally, in order to 
organize computed sound into music, there must be a strong 
notion of musical timing (such as rhythm, sonic "shape" over 
time, etc.).  Finally, the audio synthesis often must be precisely 
synchronized with input devices, real-time graphics, and other 
input and output media. 

These factors present an interesting and unique challenge to audio 
synthesis programming, because it deals not only with what and 
how, but also always with when, and at vastly different time 
granularities.  Therefore, it is essential that the programming 
language provide flexible and fine-grain control over timing at 
coarse and fine levels. 

Existing languages such as C, C++, and Java make it possible to 
write precise (non-concurrent) audio code – but with a certain 
degree of difficulty, since there is no inherent notion of time in 
these languages.  More specialized audio programming languages 
and systems such Pure Data [8], SuperCollider [6], Nyquist [4], 
and others [7] have facilities to reason about time, but do not 
embed timing directly in the program flow, nor are they sample-
synchronous at the programmer level.  Instead, these languages 
deal with timing by passing parameters to specialized modules 
that internally use the information to calculate audio.  Also, these 
languages define a fixed control rate to exert control parameters.  
Because many synthesis elements optimally operate at different 
control rates, this can be both limiting and inefficient.  Also, as a 
result, sub-control-rate manipulations must be implemented 
externally (in another language, such as C) in specialized “plug-
ins” and imported into these languages. 

Closely related to the notion of time are parallelism and 
concurrency.  Sound, as well as music, is most often the 
simultaneity of many entities and events.  Therefore, it would 
make sense to be able to program audio in a concurrent manner.  
However, traditional concurrent programming models (such as 
threads and channels) lend themselves poorly to this endeavor.  
One reason is that the underlying scheduling/timing mechanisms 
are often much too coarse (by several orders of magnitude) and 
imprecise for audio timing.  Another important and related 
challenge is programmability.  There is no inherent concurrent 
programming model that easily and precisely deals with the real-
time synchronization of fine-granularity, strongly-timed data.  
Also, traditional synchronization primitives (mutexes, 
semaphores, condition variables, and channels) suffer from coarse 
granularity, high overhead, and complexity in their use.  Indeed, 
no existing language supports precise, concurrent programming 
model for audio.  Most languages either support audio 
concurrency poorly (such as C/C++/Java), or don’t support it at 
all, and resort to dealing with concurrent events by scheduling 
them explicitly (and serially) from a single-process. 

 

Additionally, there is the problem of representation.  In audio 
synthesis, a good representation should both allow a high degree 
of programmability while clearly capturing useful information the 
domain (such as the complex flows and interactions of data and 
control signals).  In the following sections, we show how ChucK 
addresses each of these issues. 

3. CHUCK 
ChucK is a strongly-timed, concurrent, and on-the-fly audio 
programming language[9].  It is not based on a single existing 
language but built from the ground up.  Chuck code is type-
checked, emitted over a special virtual instruction set, and run in a 
virtual machine with a native audio engine and a user-level 
scheduler.  It contains the following key features: 

• A straightforward way to connect audio data-flow. 
• A sample-synchronous timing mechanism that provides a 

consistent and unified view of time – embedded directly in the 
program flow – making ChucK programs easy to maintain and 
reason about.  Data-flow is fundamentally decoupled from time. 

• A cooperative multi-tasking, concurrent programming model 
based on time that allows programmers to add concurrency 
easily and scalably.  Synchronization is accurately and 
automatically derived from the timing information. 

• Multiple, simultaneous, arbitrary, and dynamically 
programmable control rates via the timing mechanism and 
concurrency. 

• A compiler and virtual machine that run in the same process, 
both accessible from within the language. 

ChucK’s programming model addresses several problems in audio 
programming: representation, level of control of data-flow and 
time, and concurrency.  We describe the features and properties of 
ChucK in the context of these areas.   

3.1 Representation 
Representation deals with the expressive and elegant mapping of 
syntactical and semantic language constructs to audio and visual 
concepts.  An effective representation should also be 
straightforward to reason about and maintain.  ChucK addresses 
this problem in both its syntax and semantics.  The syntax 
provides a means to specify data-flow; the timing semantics 
specify when computations occur.  In this way, both high-level 
manipulation and low-level control is achieved.  We discuss the 
syntactical portion here, and present the timing semantics in 
Section 3.2.   

The basic sample-rate audio processing module in ChucK is a unit 
generator[5] (or a ugen), which generates or operates on audio 
samples.  (Examples include noise generators, sine-wave 
oscillators, digital filters, and amplitude envelope generators)  
Unit generators have been shown to be an effective programming 
abstraction for representing complex audio data flow [4,5,6,8].  
ChucK presents a simple syntax and semantics for connecting and 
manipulating unit generators. 

At the heart of the syntax is the ChucK operator: a group of 
related operators (=>, ->) that denote interconnection and 
direction of data flow.  A unit generator graph (or patch) can be 
quickly and clearly constructed by using => to connect ugen’s in a 
strongly ordered, left-to-right manner (Figure 2).  Unit generators 



in the graph implicitly compute one sample at a time.  As we will 
see, control parameters to a unit generator can be modified using 
=>, in conjunction with the timing mechanism. 

 

 

(a) 
 

noise n => filter f => dac; 
(b) 

Figure 2. (a) A noise-filter ugen graph using three unit 
generators.  (b) ChucK statement representing the patch.  
dac is the global sound output variable. 

3.2 Level of Control 
The level of control and abstraction provided by the language 
shape what can be done with the language and how it is used.  In 
the context of audio programming, we are concerned not only 
with control over data but also over time.  The latter deals with 
control rates and the manner in which time is manipulated and 
reasoned about in the language.  Thus, the question is: what is the 
appropriate level and granularity of control for data and time? 

The solution in ChucK is to provide many levels and granularity 
of control over data and time.  The key to having a flexible level 
of control lies in the ChucK timing mechanism, which consists of 
three parts. Firstly, ChucK, time is conceptually synchronized 
with audio data (samples) and exposed in the language. Sample-
rate computations are implicit (but also accessible from the 
language) for unit generators connected (directly or indirectly) to 
dac, the global audio output unit generator.  Control rate and 
musical timing are exposed and delegated to the programmer. 

Secondly, time (time) and duration (dur) are native types in the 
language.  Time refers in a point in time whereas duration is a 
finite amount of time.  Basic duration values are provided by 
default: samp (the duration between successive samples), ms 
(millisecond), second, minute, hour, day, and week.  
Additional durations can be inductively constructed using 
arithmetic operations on existing time and duration values. 

// construct a unit generator patch 
noise n => biquad f => dac; 
 
// loop: update biquad every 100 ms 
while( true ) 
{ 
    // sweep biquad center frequency  
    200 + 400 * math.sin(now*FC) -> f.freq; 
 
    // advance time by 100 ms 
    100::ms +=> now; 
} 

Figure 3.  A control loop.  The => ChucK operator is 
used to control a filter’s center frequency.  The last line 
of the loop causes time to advance by 100 milliseconds – 
this can be thought of as the control rate. 

Finally, there is a special keyword now (of type time) that holds 
the current ChucK time, which starts from 0 (at the beginning of 
the program execution).  now is the key to reasoning about and 
manipulating time in ChucK.  Programs can read the globally 
consistent ChucK time by reading the value of now.  Also, by 
assigning time values or adding duration values to now causes 

time to advance.  As an important side effect, this operation 
causes the current process to block (allowing audio to compute) 
until now actually reaches the desired point in time (Figure 3).  
We call this synchronization to time. 

This mechanism provides a consistent, sample-synchronous view 
of time and embeds timing control directly in the code.  This 
formal correspondence between timing and program flow makes 
programs easier to write and maintain, and fulfills several 
properties (.e. deterministic order of computation) – therefore, 
ChucK is said to be strongly-timed.  Furthermore, data-flow is 
decoupled from time, and control rate can be fully throttled by the 
programmer.  Audio rates, control rates, and high-level musical 
timing are unified under the same timing mechanism. 

3.3 Concurrent Audio Programming 
Sound and music are often the simultaneity of many precisely 
timed entities and events.  There have been many ways devised to 
represent simultaneity [4,6,7,8] in computer music languages.  
However, until ChucK, there hasn't been a truly concurrent and 
precisely timed programming model for audio.  This aspect of 
ChucK is a powerful extension of the timing mechanism. 

The intuitive goal of concurrent audio programming is 
straightforward: to write concurrent code that shares data as well 
as time (Figure 4). 

 

 

 

 
 

Figure 4. A unit generator patch and three concurrent 
paths of execution at different control rates (from left: 
control period = 50 samples, 80 milliseconds, and 2 
seconds). 

ChucK introduced the concepts of shreds and the shreduler.  A 
shred is a concurrent entity like a thread[2].  But unlike threads, a 
shred is a deterministic shred of computation, synchronized by 
time.  Each concurrent path of execution in Figure 4 can be 
realized by a shred.  Shreds can reside in separate source files or 
be dynamically spawned (sporked) from a single parent shred. 

The key insight to understanding concurrency in ChucK is that 
shreds are automatically synchronized by time. Two independent 
shreds can execute with precise timing relative to each other and 
the virtual machine, without any knowledge of each other.  This is 
a powerful mechanism for specifying and reasoning about time 
locally and globally in a synthesis program.  Furthermore, it 
allows for any number of different control rates to execute 
concurrently and accurately.  ChucK concurrency is orthogonal in 
that programmers can add concurrency without adding additional 
synchronization to existing code.  It is scalable, because shreds are 
implemented as efficient user-level constructs[1] in the ChucK 
Virtual Machine.  The timing mechanism makes it straightforward 
to reason about concurrent code with complex timing. 

White 
Noise 

BiQuad 
Filter 

DAC 

impulse i => biquad f => dac; 

while( true ) 
{ 
 // impulse train 
 1.0 => i.next; 
 // advance time 
 50::samp +=> now; 
} 

while( true ) 
{ 
  // sweep 
  next_f() => 
     f.freq; 
  80:ms +=> now; 
} 

while( true ) 
{ 
  // poll 
  sensor[8] 
     => listener; 
  2::sec +=> now; 
} 



3.4 ChucK Virtual Machine 
ChucK code is type-checked, compiled into virtual ChucK 
instructions, and executed in the ChucK Virtual Machine (Figure 
5), which consists of an on-the-fly compiler, a virtual instruction 
interpreter, a native audio engine, the shreduler (which shredules 
the shreds), and an I/O manager.  The on-the-fly compiler, the 
shreduler, and the virtual machine itself can be accessed as global 
objects from within the language.  For example, a shred can 
request the compiler to parse and type-check a piece of code 
dynamically, and then shredule the code to execute as part of the 
same process.  This mechanism, along with the timing and 
concurrency, forms the foundation for our on-the-fly 
programming model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  The ChucK Virtual Machine runtime. 

3.5 On-the-fly Programming 
Using a combination of concurrency, precise programmatic 
timing, and the architecture of the audio computation model, 
ChucK makes it possible to write, augment, and modify programs 
during runtime.  In our current framework[10], new shreds can be 
written and assimilated into the virtual machine, fully capable of 
discovering and sharing both data and timing with the existing 
process.  Similarly, existing shreds can be removed, suspended, or 
replaced.  Programs constructed on-the-fly are no different than 
statically written programs in their content.  Real-time audio and 
graphics software can be developed together in this manner.  
Indeed, audio and visuals can be seamlessly and precisely 
synchronized under the timing mechanism.  The runtime 
programmability lends itself to rapid experimentation for real-
time multimedia development, as well as to emerging interactive 
performance possibilities. 

4. CONCLUSION AND FUTURE  WORK 
The features of ChucK provide a new, concurrent programming 
model for writing precise real-time audio and multimedia 
programs.  The on-the-fly programming features of ChucK 
embody an immediate-run coding aesthetic and encourage 
runtime interaction and experimentation using the program itself. 

Currently, we are continuing to add new language features and 
support libraries, including ones for real-time visuals (such as 
GlucK: OpenGL and visualization API for ChucK).  We are also 
exploring new “context-sensitive”, audio and multimedia 
programming environments that understand the deep structure of 

the program being written, and can use this to help programmers 
develop on-the-fly programs more efficiently.  

Additionally, it would be useful to reduce the granularity of on-
the-fly modules (i.e. from shreds to code segments or even 
instructions).  Since ChucK programs are emitted into virtual 
instructions, we have a great degree of control over the execution 
and can potentially use this to our advantage. 

In conclusion, ChucK is an ongoing project, which seeks to 
provide a new programming model and tool for researchers, 
composers, and developers to write and experiment with complex 
audio synthesis and multimedia programs. 
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