
ChucK: A Programming Language for
On-the-fly, Real-time Audio Synthesis and Multimedia

Ge Wang
Department of Computer Science

Princeton University
Princeton, NJ. U.S.A.

gewang@cs.princeton.edu

Perry Cook
Department of Computer Science (also Music)

Princeton University
Princeton, NJ. U.S.A.

prc@cs.princeton.edu

ABSTRACT
In this paper, we describe ChucK – a programming language and
programming model for writing precisely timed, concurrent audio
synthesis and multimedia programs. Precise concurrent audio
programming has been an unsolved (and ill-defined) problem.
ChucK provides a concurrent programming model that solves this
problem and significantly enhances designing, developing, and
reasoning about programs with complex audio timing. ChucK
employs a novel data-driven timing mechanism and a related
time-based synchronization model, both implemented in a virtual
machine. We show how these features enable precise, concurrent
audio programming and provide a high degree of programmability
in writing real-time audio and multimedia programs. As an
extension, programmers can use this model to write code on-the-
fly – while the program is running. These features provide a
powerful programming tool for building and experimenting with
complex audio synthesis and multimedia programs.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications –
specialized application languages. D.3.3 [Programming
Languages]: Language Constructs and Features – Concurrent
Programming Structures.

General Terms
Design, Experimentation, Languages.

Keywords
Programming language, audio synthesis, multimedia,
concurrency, synchronization, signal processing, real-time,
compiler, virtual machine.

1. INTRODUCTION
Time and parallelism are essential notions in audio and
multimedia programming. However, providing precise and yet
clear programmatic control over time and timing is challenging.
Existing low-level languages, such as C/C++/Java, have no
inherent notion of time, whereas high-level languages hide timing

from the programmer. Additionally, supporting a concurrent
programming model for audio synthesis and signal processing can
be very useful but has been an unsolved challenge from both the
language level and the system level. Currently, no existing
language supports precise, concurrent programming of audio.
This fundamentally limits the way we write multimedia programs.

ChucK is a strongly-timed, concurrent audio programming
language[9]. Its language constructs and programming model
presents an elegant solution to concurrent audio programming
with sample-synchronous precision. This fundamentally enhances
our ability to write audio programs with complex timing. ChucK
was designed to the meet the following goals.

Representation: provide a clear syntactic and semantic
representation that captures important properties of audio
programming paradigms.

Timing: support precise, sample-synchronous audio timing with
high degree of programmability.

Concurrency: provide the ability to write modular, concurrent
audio/multimedia programs with high precision and clarity.

Programmability: give precedence to a high degree of
programmatic control over timing, audio synthesis, and
synchronization with other media (i.e. real-time graphics).

On-the-fly Programming: use concurrency and precise timing as
a framework to explore on-the-fly audio/multimedia programming
(Figure 1) – to add/modify/remove parts of the program as it is
running, opening new possibilities for runtime audio and media
experimentation.

Figure 1. On-the-fly Programming. Editing and

compiling a program during its runtime.

We will motivate these goals in Section 2, and discuss how
ChucK addresses each in Section 3. We conclude and discuss
future directions in Section 4.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’04, October 10-16, 2004, New York, New York, U.S.A.
COPYRIGHT 2004 ACM 1-58113-893-8/04/0010...$5.00.

2. BACKGROUND
The notion of time is inseparable from audio and multimedia
programming – it is fundamentally ingrained into sound, music,
and our perception of audio and visuals. For audio, timing issues
exist at three fundamental levels. At the lowest level, digital
audio must be computed and rendered at sample rate (i.e. 44100
samples/second for CD-quality audio). At a somewhat higher
level, precisely timed control must be exerted (at control-rate) in
order to synthesis audio with desired characteristics (i.e. timbres,
frequencies, amplitude, filter properties, etc.). Finally, in order to
organize computed sound into music, there must be a strong
notion of musical timing (such as rhythm, sonic "shape" over
time, etc.). Finally, the audio synthesis often must be precisely
synchronized with input devices, real-time graphics, and other
input and output media.

These factors present an interesting and unique challenge to audio
synthesis programming, because it deals not only with what and
how, but also always with when, and at vastly different time
granularities. Therefore, it is essential that the programming
language provide flexible and fine-grain control over timing at
coarse and fine levels.

Existing languages such as C, C++, and Java make it possible to
write precise (non-concurrent) audio code – but with a certain
degree of difficulty, since there is no inherent notion of time in
these languages. More specialized audio programming languages
and systems such Pure Data [8], SuperCollider [6], Nyquist [4],
and others [7] have facilities to reason about time, but do not
embed timing directly in the program flow, nor are they sample-
synchronous at the programmer level. Instead, these languages
deal with timing by passing parameters to specialized modules
that internally use the information to calculate audio. Also, these
languages define a fixed control rate to exert control parameters.
Because many synthesis elements optimally operate at different
control rates, this can be both limiting and inefficient. Also, as a
result, sub-control-rate manipulations must be implemented
externally (in another language, such as C) in specialized “plug-
ins” and imported into these languages.

Closely related to the notion of time are parallelism and
concurrency. Sound, as well as music, is most often the
simultaneity of many entities and events. Therefore, it would
make sense to be able to program audio in a concurrent manner.
However, traditional concurrent programming models (such as
threads and channels) lend themselves poorly to this endeavor.
One reason is that the underlying scheduling/timing mechanisms
are often much too coarse (by several orders of magnitude) and
imprecise for audio timing. Another important and related
challenge is programmability. There is no inherent concurrent
programming model that easily and precisely deals with the real-
time synchronization of fine-granularity, strongly-timed data.
Also, traditional synchronization primitives (mutexes,
semaphores, condition variables, and channels) suffer from coarse
granularity, high overhead, and complexity in their use. Indeed,
no existing language supports precise, concurrent programming
model for audio. Most languages either support audio
concurrency poorly (such as C/C++/Java), or don’t support it at
all, and resort to dealing with concurrent events by scheduling
them explicitly (and serially) from a single-process.

Additionally, there is the problem of representation. In audio
synthesis, a good representation should both allow a high degree
of programmability while clearly capturing useful information the
domain (such as the complex flows and interactions of data and
control signals). In the following sections, we show how ChucK
addresses each of these issues.

3. CHUCK
ChucK is a strongly-timed, concurrent, and on-the-fly audio
programming language[9]. It is not based on a single existing
language but built from the ground up. Chuck code is type-
checked, emitted over a special virtual instruction set, and run in a
virtual machine with a native audio engine and a user-level
scheduler. It contains the following key features:

• A straightforward way to connect audio data-flow.
• A sample-synchronous timing mechanism that provides a

consistent and unified view of time – embedded directly in the
program flow – making ChucK programs easy to maintain and
reason about. Data-flow is fundamentally decoupled from time.

• A cooperative multi-tasking, concurrent programming model
based on time that allows programmers to add concurrency
easily and scalably. Synchronization is accurately and
automatically derived from the timing information.

• Multiple, simultaneous, arbitrary, and dynamically
programmable control rates via the timing mechanism and
concurrency.

• A compiler and virtual machine that run in the same process,
both accessible from within the language.

ChucK’s programming model addresses several problems in audio
programming: representation, level of control of data-flow and
time, and concurrency. We describe the features and properties of
ChucK in the context of these areas.

3.1 Representation
Representation deals with the expressive and elegant mapping of
syntactical and semantic language constructs to audio and visual
concepts. An effective representation should also be
straightforward to reason about and maintain. ChucK addresses
this problem in both its syntax and semantics. The syntax
provides a means to specify data-flow; the timing semantics
specify when computations occur. In this way, both high-level
manipulation and low-level control is achieved. We discuss the
syntactical portion here, and present the timing semantics in
Section 3.2.

The basic sample-rate audio processing module in ChucK is a unit
generator[5] (or a ugen), which generates or operates on audio
samples. (Examples include noise generators, sine-wave
oscillators, digital filters, and amplitude envelope generators)
Unit generators have been shown to be an effective programming
abstraction for representing complex audio data flow [4,5,6,8].
ChucK presents a simple syntax and semantics for connecting and
manipulating unit generators.

At the heart of the syntax is the ChucK operator: a group of
related operators (=>, ->) that denote interconnection and
direction of data flow. A unit generator graph (or patch) can be
quickly and clearly constructed by using => to connect ugen’s in a
strongly ordered, left-to-right manner (Figure 2). Unit generators

in the graph implicitly compute one sample at a time. As we will
see, control parameters to a unit generator can be modified using
=>, in conjunction with the timing mechanism.

(a)

noise n => filter f => dac;
(b)

Figure 2. (a) A noise-filter ugen graph using three unit
generators. (b) ChucK statement representing the patch.
dac is the global sound output variable.

3.2 Level of Control
The level of control and abstraction provided by the language
shape what can be done with the language and how it is used. In
the context of audio programming, we are concerned not only
with control over data but also over time. The latter deals with
control rates and the manner in which time is manipulated and
reasoned about in the language. Thus, the question is: what is the
appropriate level and granularity of control for data and time?

The solution in ChucK is to provide many levels and granularity
of control over data and time. The key to having a flexible level
of control lies in the ChucK timing mechanism, which consists of
three parts. Firstly, ChucK, time is conceptually synchronized
with audio data (samples) and exposed in the language. Sample-
rate computations are implicit (but also accessible from the
language) for unit generators connected (directly or indirectly) to
dac, the global audio output unit generator. Control rate and
musical timing are exposed and delegated to the programmer.

Secondly, time (time) and duration (dur) are native types in the
language. Time refers in a point in time whereas duration is a
finite amount of time. Basic duration values are provided by
default: samp (the duration between successive samples), ms
(millisecond), second, minute, hour, day, and week.
Additional durations can be inductively constructed using
arithmetic operations on existing time and duration values.

// construct a unit generator patch
noise n => biquad f => dac;

// loop: update biquad every 100 ms
while(true)
{
 // sweep biquad center frequency
 200 + 400 * math.sin(now*FC) -> f.freq;

 // advance time by 100 ms
 100::ms +=> now;
}

Figure 3. A control loop. The => ChucK operator is
used to control a filter’s center frequency. The last line
of the loop causes time to advance by 100 milliseconds –
this can be thought of as the control rate.

Finally, there is a special keyword now (of type time) that holds
the current ChucK time, which starts from 0 (at the beginning of
the program execution). now is the key to reasoning about and
manipulating time in ChucK. Programs can read the globally
consistent ChucK time by reading the value of now. Also, by
assigning time values or adding duration values to now causes

time to advance. As an important side effect, this operation
causes the current process to block (allowing audio to compute)
until now actually reaches the desired point in time (Figure 3).
We call this synchronization to time.

This mechanism provides a consistent, sample-synchronous view
of time and embeds timing control directly in the code. This
formal correspondence between timing and program flow makes
programs easier to write and maintain, and fulfills several
properties (.e. deterministic order of computation) – therefore,
ChucK is said to be strongly-timed. Furthermore, data-flow is
decoupled from time, and control rate can be fully throttled by the
programmer. Audio rates, control rates, and high-level musical
timing are unified under the same timing mechanism.

3.3 Concurrent Audio Programming
Sound and music are often the simultaneity of many precisely
timed entities and events. There have been many ways devised to
represent simultaneity [4,6,7,8] in computer music languages.
However, until ChucK, there hasn't been a truly concurrent and
precisely timed programming model for audio. This aspect of
ChucK is a powerful extension of the timing mechanism.

The intuitive goal of concurrent audio programming is
straightforward: to write concurrent code that shares data as well
as time (Figure 4).

Figure 4. A unit generator patch and three concurrent
paths of execution at different control rates (from left:
control period = 50 samples, 80 milliseconds, and 2
seconds).

ChucK introduced the concepts of shreds and the shreduler. A
shred is a concurrent entity like a thread[2]. But unlike threads, a
shred is a deterministic shred of computation, synchronized by
time. Each concurrent path of execution in Figure 4 can be
realized by a shred. Shreds can reside in separate source files or
be dynamically spawned (sporked) from a single parent shred.

The key insight to understanding concurrency in ChucK is that
shreds are automatically synchronized by time. Two independent
shreds can execute with precise timing relative to each other and
the virtual machine, without any knowledge of each other. This is
a powerful mechanism for specifying and reasoning about time
locally and globally in a synthesis program. Furthermore, it
allows for any number of different control rates to execute
concurrently and accurately. ChucK concurrency is orthogonal in
that programmers can add concurrency without adding additional
synchronization to existing code. It is scalable, because shreds are
implemented as efficient user-level constructs[1] in the ChucK
Virtual Machine. The timing mechanism makes it straightforward
to reason about concurrent code with complex timing.

White
Noise

BiQuad
Filter

DAC

impulse i => biquad f => dac;

while(true)
{
 // impulse train
 1.0 => i.next;
 // advance time
 50::samp +=> now;
}

while(true)
{
 // sweep
 next_f() =>
 f.freq;
 80:ms +=> now;
}

while(true)
{
 // poll
 sensor[8]
 => listener;
 2::sec +=> now;
}

3.4 ChucK Virtual Machine
ChucK code is type-checked, compiled into virtual ChucK
instructions, and executed in the ChucK Virtual Machine (Figure
5), which consists of an on-the-fly compiler, a virtual instruction
interpreter, a native audio engine, the shreduler (which shredules
the shreds), and an I/O manager. The on-the-fly compiler, the
shreduler, and the virtual machine itself can be accessed as global
objects from within the language. For example, a shred can
request the compiler to parse and type-check a piece of code
dynamically, and then shredule the code to execute as part of the
same process. This mechanism, along with the timing and
concurrency, forms the foundation for our on-the-fly
programming model.

Figure 5. The ChucK Virtual Machine runtime.

3.5 On-the-fly Programming
Using a combination of concurrency, precise programmatic
timing, and the architecture of the audio computation model,
ChucK makes it possible to write, augment, and modify programs
during runtime. In our current framework[10], new shreds can be
written and assimilated into the virtual machine, fully capable of
discovering and sharing both data and timing with the existing
process. Similarly, existing shreds can be removed, suspended, or
replaced. Programs constructed on-the-fly are no different than
statically written programs in their content. Real-time audio and
graphics software can be developed together in this manner.
Indeed, audio and visuals can be seamlessly and precisely
synchronized under the timing mechanism. The runtime
programmability lends itself to rapid experimentation for real-
time multimedia development, as well as to emerging interactive
performance possibilities.

4. CONCLUSION AND FUTURE WORK
The features of ChucK provide a new, concurrent programming
model for writing precise real-time audio and multimedia
programs. The on-the-fly programming features of ChucK
embody an immediate-run coding aesthetic and encourage
runtime interaction and experimentation using the program itself.

Currently, we are continuing to add new language features and
support libraries, including ones for real-time visuals (such as
GlucK: OpenGL and visualization API for ChucK). We are also
exploring new “context-sensitive”, audio and multimedia
programming environments that understand the deep structure of

the program being written, and can use this to help programmers
develop on-the-fly programs more efficiently.

Additionally, it would be useful to reduce the granularity of on-
the-fly modules (i.e. from shreds to code segments or even
instructions). Since ChucK programs are emitted into virtual
instructions, we have a great degree of control over the execution
and can potentially use this to our advantage.

In conclusion, ChucK is an ongoing project, which seeks to
provide a new programming model and tool for researchers,
composers, and developers to write and experiment with complex
audio synthesis and multimedia programs.

5. ACKNOWLEDGMENTS
Our sincere thanks to the chairs of the ACM Multimedia 2004
Open Source Software Competition, Ketan Mayer-Patel and
Roger Zimmerman for providing us the opportunity to present this
work.

ChucK is freely available at:
http://chuck.cs.princeton.edu/

6. REFERENCES
[1] Anderson, T. E., Bershal, B. N., Lazowska, E. D., and Levy,

H. M., “Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism.” ACM
Transactions on Computer Systems, 10(1):53-79.

[2] Birrell, A. D., “An Introduction to Programming with
Threads.” Technical Report SRC-035, Digital Equipment
Corporation, January 1989.

[3] Dannenberg, R. B. and Brandt, E., “A Flexible Real-time
Software Synthesis System.” In Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 270-273, 1996.

[4] Dannenberg, R. B., “Machine Tongues XIX: Nyquist: a
Language for Composition and Sound Synthesis.” Computer
Music Journal, 21(3):50-60, 1997.

[5] Mathews, M. V. The Technology of Computer Music. MIT
Press, 1969.

[6] McCartney, J., “Rethinking the Computer Music
Programming Language: SuperCollider.” Computer Music
Journal, 26(4):61-68, 2002.

[7] Pope, S. T., “Machine Tongues XV: Three Packages for
Software Sound Synthesis.” Computer Music Journal,
17(2):23-54, 1993.

[8] Puckette, M., “Pure Data.” In Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 269-272, 1997.

[9] Wang, G. and Cook, P. R., “ChucK: a Concurrent and On-
the-fly Audio Programming Language.” In Proceedings of
the International Computer Music Conference. International
Computer Music Association, pp. 219-226, Singapore, 2003.

[10] Wang, G. and Cook, P. R., “On-the-fly Programming: Using
Code as an Expressive Musical Instrument.” In Proceedings
of the Internal Conference on New Interfaces for Musical
Expression. pp. 138-143, Hamamatsu, Japan, 2004.

Execution
Unit

Shreduler

Audio
Engine

I/O
Manager

shred shred

ChucK process

On-the-fly
compiler

ChucK code

shred

