
DESIGNING AND IMPLEMENTING
THE CHUCK PROGRAMMING LANGUAGE

Ge Wang Perry R. Cook† Ananya Misra
Princeton University

Department of Computer Science (†also Music)

ABSTRACT

ChucK re-factors the idea of a computer music lan-
guage into three orthogonal basis components: unit gen-
erator connections that are data-flow only, globally con-
sistent ”first-class” time control, and sample-synchronous
concurrency. The syntax, semantic, and usage have been
discussed in previous works. The focus and contributions
of this paper are (1) to examine the philosophies and deci-
sions in the language design (2) to describe ChucK’s im-
plementation and runtime model, and (3) to outline poten-
tial applications enabled by this framework. We present
an experiment in designing a computer music language
”from scratch” and show how things work. We hope these
ideas may provides an interesting reference for future com-
puter music systems.

1. INTRODUCTION

”The old computing is about what computers can do,
the new computing is about what people can do.”

- Ben Shneiderman, HCI Researcher.

If Human Computer Interaction (HCI) research strives
to give people greater and better access to using the com-
puter, then perhaps computer music language design aims
to give programmers more natural representation of audio
and musical concepts. Machines have advanced to a point
where system design no longer depends on blazing per-
formance, but can focus foremost on flexibility and how
users can interact with the system.

On today’s machines, ChucK [10] is a real-time au-
dio programming language that offers potentially worse
performance than languages such as SuperCollider [4],
Nyquist [2], Max/MSP [6], Pure Data [7], CSound [9],
and other systems [5, 3]. But it still runs comfortably
in real-time for many tasks and, more importantly, offers
something unique: a fundamental and flexible program-
ming model to manipulate time and parallelism.

ChucK is strongly-timed, concurrent, and embodies a
do-it-yourselfspirit. It combines the conciseness of high-
level computer music languages with the transparency and
programmability of low-level languages. It is readable
even when programs become complex. This paper de-
scribes an experiment in designing a computer music lan-
guage from scratch, and discusses its implementation, out-
line applications made possible by this model.

ChucK

On-the-fly
ProgrammingAudicle

 while(1)

 1::second +=> now;

 chuck vm %> sporking shred 'foo'

chuck vm status:

shred 'foo' : active : 3m5s

shred 'bar' : suspended : 10m20s

computer

projection

speaker

projector

Figure 1. A short history of ChucK (2003), on-the-fly
programming (2004), and the Audicle (2004).

2. LANGUAGE DESIGN GOALS

ChucK continues to be an open-source research experi-
ment in designing a computer music language from the
”ground up”. While it draws ideas from many sources
(C, Java, Max, SuperCollider), it isn’t based on a single
existing language; hence we were free (and doomed) to
make language design decisions at nearly every stage. A
main focus of the design was the precise programmabil-
ity of time and concurrency, in a readable way. System
throughput remains an important consideration, especially
for real-time audio, but was not our top priority. We de-
signed the language to provide maximal control for the
programmer, and tailored the system performance around
the design. Design goals are as follows.

• Flexibility : allow the programmer to naturally specify
both high and low level operations in time.

• Concurrency: allow the programmer to write parallel
modules that share both data and time, and that can be
precisely synchronized.

• Readability: provide/maintain a strong correspondence
between code structure and timing.

• A do-it-yourself language: combine the expressiveness
of lower-level languages and the ease of high-level com-
puter music languages. To support high-level musical
concepts, precise low-level timing, and the creation of
”white-box” unit generators, all directly in the language.

• On-the-fly: allow programs to be edited as they run.
This work is ongoing [11], and is not discusses here.

The solution in ChucK was to make time itself com-
putable (as a first-class citizen of the language), and al-
lowed a program to be ”self-aware” in the sense that it
always knows where it is in time, and can control its own
progress over time. Furthermore, if many programs can
share a central notion of time, then it is possible to syn-
chronize parallel code solely and naturally based on time.
Thus arose our concept of astrongly-timed language, in
which programs have precise control over their own tim-
ing. Control data to any unit generator can be sample-
synchronously asserted at any time.

This mechanism transfered the primary control over
time from inside opaque unit generators to the language,
mapping program flow explicitly to time flow. This en-
abled the programmer / composer to specify arbitrarily
complex timing and to ”sculpt” a sound or passage into
perfection by operating on it at any temporal granularity.

We are not the first to address this issue of enabling
low-level timing in a high-level audio programming lan-
guage. Chronic [1] and its temporal type constructors
was the first attempt we are aware of to make arbitrary
sub-control rate timing programmable for sound synthe-
sis. While the mechanisms of Chronic are very different
from ChucK’s, one aim is the same: to free programmers
from having to implement ”black-box”, opaque unit gen-
erators (in a lower-level language, such as C/C++) when a
new lower-level feature is desired.

However, time alone is not enough – we also need con-
currency to expressively capture parallelism. Fortunately,
the timing mechanism lent itself directly to a concurrent
programming model. Multiple processes (calledshreds),
each advancing time in its own manner, can be synchro-
nized and serialized directly from the timing information.

// connect ugens
FooGen foo => BarGen bar => dac;
foo => dac;

// loop
while(...)
{
 ...
 xyz() => foo.abc;
 ...
 ...
 D1 +=> now;
 ...
 ...
 D2 +=> now;
}
...
D3 +=> now;
...

assert control
on UGen foo

statements to
advance time
may be placed
anywhere

dynamically create
and connect unit
generators

Figure 2. Structure for a basic ChucK shred. Any number
of shreds can run in parallel.

This yields a programming model (Figure 2) in which
concurrent shreds construct and control a global unit gen-
erator network over time. A scheduler (orshreduler) uses
the timing information to serialize the shreds and the au-
dio computation in a globally synchronous manner. It is
completely deterministic (real-time input aside) and the
synthesized audio is guaranteed to be correct, even when
real-time isn’t feasible.

3. FROM CONCEPT TO IMPLEMENTATION

ChucK programs are type-checked, emitted into ChucK
shreds (processes) containing byte-code, and then inter-
preted in the virtual machine. A shredulershredulesthe
shreds and serializes the order of execution between vari-
ous shreds and the audio engine. Under this model, shreds
can dynamically connect, disconnect, and share unit gen-
erators in a global network. Additionally, shreds can per-
form computations and change the state of any unit gen-
erator at precisely any point in time.

Audio is synthesized from the global unit generator
graph a sample at time by ”sucking” samples beginning
from well-known ugen ”sinks” - such asdac . Time as
specified in the shreds is mapped by the system to the au-
dio synthesis stream. When a shred advances time, it is
actually scheduling itself to be woken up after some future
sample. In this sense, the passage of time isdata-driven,
and guarantees that the timing in the shreds is bound only
to the output and not to any other clocks - and that the
final synthesis is ”correct” and sample-faithful regardless
of whether the system is running in real-time or not.

Additional processes interface with I/O devices (as nec-
essary) and the runtime compiler. A server listens for in-
coming network messages. Various parts of the VM can
optionally collect real-time statistics to be visualized ex-
ternally in environments such as the Audicle [12].

3.1. Compilation + VM Instructions

Compilation of a ChucK program follows the standard
phases of lexical analysis, syntax parsing, type checking,
and emission into instructions. ChucK is procedural and
strongly-typed. Programs are emitted into ChucK virtual
machine instructions, either as part of a new shred, or as
globally available objects or routines. The compiler runs
in the same process as the virtual machine, and can com-
pile new programs on-demand.

3.2. Shreds and the Shreduler

After compilation, a ChucK shred is passed directly to the
virtual machine, where it is shreduled to start execution
immediately. Each shred has several components (Fig-
ure 4): (1) bytecode instructions emitted from the source
code, (2) an operand stack for local and temporary calcu-
lations (functionally equivalent to hardware registers), (3)
a memory stack to store local variables at various scopes,
i.e. across function calls, (4) references to children shreds
(shreds spawned by the current shred) and a parent shred,
if any, and (5) a shred-local view ofnow - which is a frac-
tional sample away from the system-widenow and which
enables sub-sample-rate timing.

The state of a shred is completely characterized by the
content of its stacks and their respective stack pointers
(sp). It is therefore possible to suspend a shred between
any two instructions. Under normal circumstances, how-
ever, a shred is suspended only after instructions that ad-
vance time. Shreds can create and remove other shreds.

Runtime
Compiler

VM /
Shreduler

Listener

I/O
Manager Audio

Engine

Byte-code
Interpreter

Type
System

global ugen graph

dac

connect / control

new shreds

active
shred

queued shreds

to soundcard

to
Audicle

from
Audicle

from
network

stats

Figure 3. The ChucK Run-time.

The shreduler serializes the execution of the shred with
the audio engine, and also maintains the system-wide value
of the keywordnow. The unit ofnow is mapped to the
number of samples in the final synthesis that have elapsed
since the beginning of the program.

Shred

memory
stack

operand
stack

sp sp

bytecode

shred-local
storage

parent
shred

children
shredschildren
shredschildren
shreds

Figure 4. Components of a ChucK shred.

For a single shred, the shreduling algorithm is illus-
trated in Figure 5. A shred is initially shreduled to execute
immediately - further shreduling beyond this point is left
to the shred. The shreduler checks to see if the shred is
shreduled to wake up at or before the current time (now).
If so, the shred resumes execution in the interpreter until
it schedules itself for some future time T. At this point, the
shred is suspended and the wake-up time is set to T. Other-
wise, if the shred is not scheduled to wake up atnow, then
the shreduler calls the audio engine, which traverses the
global unit generator graph and computes the next sam-
ple. The shreduler then advances the value ofnow by
the duration of 1 sample (called asamp in ChucK), and
checks the wake-up time again. It continues to operate in
this fashion, interleaving shred execution and audio com-
putation in a completely synchronous manner.

It is possible that a shred misbehaves and never ad-
vances time or, in the real-time case, performs enough
computation to delay audio. The Halting Problem tells

us that the VM cannot hope to detect this reliably. How-
ever, it is possible for the user to identify this situation and
manually remove a shred from the interpreter. Secondly,
the above algorithm is geared towards causal, immediate
mode operations in which time can only be advanced to-
wards the future. This same model can be extended so
shreds can also move backwards in time, which is not dis-
cussed here.

yes no
Time

to wake
up shred?

Start

Resume
Shred

Shred
advances

time

Compute
next sample

Traverse
UGen graph

Advance
time by

1 sample

 schedule
(suspend)

shred

Figure 5. Shreduling a single shred with synthesis.

For multiple shreds, the mechanism behaves in a simi-
lar manner, except the shreduler has a waiting list of shreds,
sorted by requested wake-up time. Before the system-
widenow is advanced to the next sample, all shreds wait-
ing to run at or before the current time are allowed to run.

3.3. Bytecode Interpreter

ChucK virtual machine bytecode instructions operate on
a 4-tuple: (1) the shred operand stack, (2) memory stack,
(3) reference to the shred itself, (4) the virtual machine the
shred is running on. Each instruction has well-defined be-
havior relative to the stacks, shred, and VM. Instructions
range from arithmetic operations such as ADD-FLOAT
and XOR-INT, to more complex ones like ADVANCE-
TIME. Because ChucK is strongly-typed, instructions can
operate without any run-time type checking (after compi-
lation), thus outperforming dynamically typed interpreters.

3.4. Audio Computation

Unit generators are dynamically created, connected, dis-
connected, and controlled from shreds. However, the ac-
tual audio computation takes place separately. When the
shreduler decides that it’s appropriate to compute the next
sample and advance time, the audio engine is invoked.
The global unit generator graph is traversed in depth-first
order, starting from one of several well-known sinks, such
asdac . Each unit generator connected to thedac either
directly or indirectly is asked to compute and return the
next sample. The system marks visited nodes so that each
unit generator is computed exactly once for every sample.
The output value of of each ugen is stored and can be re-
called, enabling feedback cycles in the graph.

4. APPLICATIONS AND ”COOL SIDE EFFECTS”

ChucK’s strongly-timed programming model has enabled
many interesting applications and side effects. Some are
already implemented, others are in the works.

Visualizing the programming process. This frame-
work lends itself to visualization. Relative timing, concur-
rent processes and their activities can be displayed in real-
time by the ”context-sensitive” Audicle programming en-
vironment (Figure 6). Combined with live coding, the Au-
dicle provides insight into the audio programs we write.

Figure 6. Real-time visualization in the Audicle.

Writing ”white-box” unit generators . Since we are
able to talk about time in a globally consistent and arbi-
trarily fine level, it is possible to construct unit generators
directly in ChucK. This reduces the need to go outside the
language when adding low-level functionality (granular,
FOF’s, etc.), encouraging new ”open-source” UGen’s.

Building and testing interactive systems. ChucK’s
concurrent model makes it easy to develop complex map-
pings for computer music controllers. The timing mech-
anism makes it easy to precisely record input sensor data
for playback and storage. Further, timings of weeks and
years can be programmed naturally.

Precisely specifying synthesis algorithms. Because
ChucK has no dependencies on system timing, determin-
istic audio synthesis is guaranteed. This consistency and
precision, combined with explicit readability, allows clear
algorithm specification (i.e. for education and research).

Programming audio analysis. This time-based model
is applicable to any system that processes audio or other
stream-based data, allowing ”hopping” through time in a
strongly-timed manner. In addition to audio synthesis, it
may be beneficial to use the same framework for feature
extraction and audio analysis, connecting and controlling
modules in systems like MARSYAS [8].

5. CONCLUSION

Recall the opening quote of this paper. We have entered
an age in computing where it’s no longer mandatory to de-
sign systems tailored around how computers can best per-
form, but around how humans (including programmers)
can better interface and control the computer. This is not
to say that good performance and optimization are not im-
portant in system design. It’s just that we are no longer
limited by the same ”need for speed” because computers
themselves have become more powerful. In this sense we
are fortunate. Indeed, ChucK is an experiment afforded
by these trends. Embedded in this experiment is the hope
that sound becomes morefree– both in terms of the cost
in computing it, and how we program it.

http://chuck.cs.princeton.edu/

6. REFERENCES

[1] Brandt, E. ”Temporal Type Constructors for Com-
puter Music Programming”,Proc. ICMC, 2000.

[2] Dannenberg, R. B. ”Machine Tongues XIX:
Nyquist, a Language for Composition and Sound
Synthesis”,CMJ, 21(3), 1997.

[3] Mathews, M. V.The Technology of Computer Music,
Cambridge, MA: MIT Press. 1969.

[4] McCartney, J. ”SuperCollider: A New Real-time
Synthesis Language”,Proc. ICMC, 1996.

[5] Pope, S. T. ”Machine Tongues XV: Three Packages
for Software Sound Synthesis”,CMJ, 17(2), 1993.

[6] Puckette, M. ”Combining Event and Signal Process-
ing in the MAX Graphical Programming Environ-
ment”,CMJ, 15(3), 1991.

[7] Puckett, M. Pure Data,Proc. ICMC. 1996.
[8] Tzanetakis, G., and P. R. Cook. ”MARSYAS: A

Framework for Audio Analysis”,Organised Sound
4(3), 2000.

[9] Vercoe, B. and D. Ellis. Real-Time CSOUND: Soft-
ware Synthesis with Sensing and Control,Proc.
ICMC, 1990.

[10] Wang, G. and P. R. Cook. ”ChucK: A Concurrent,
On-the-fly Audio Programming Language”,Proc. of
the ICMC, 2003.

[11] Wang, G. and P. R. Cook. ”On-the-fly Programming:
Using Code as an Expressive Musical Instrument”,
Proc. NIME, 2004.

[12] Wang, G. and P. R. Cook. ”The Audicle: a
Context-sensitive, On-the-fly Audio Programming
Environ/mentality”,Proc. ICMC2004.

