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Figure 0.  Some things associated with an Audicle.

Abstract 
Many software environments have been developed for 
computer music.  Programming environments typically provide 
constructs to implement synthesis or musical algorithms, 
whereas runtime environments allow performers to exert 
parametric control over their programs onstage, in real-time.  
We present a new type of audio programming environment that 
integrates the programmability of the development environment 
with elements of the runtime environment.  The result, called 
the Audicle, is a novel integration of a concurrent “smart” 
editor, compiler, virtual machine, and debugger, all running in 
the same address space, sharing data, and working together at 
runtime.  We believe this augmentation has the potential to 
fundamentally enhance the way we write and visualize audio 
programs both offline and on-the-fly. 

In this paper, we examine existing programming and runtime 
environments, present the ideas behind the Audicle, and 
demonstrate its features and properties.  Our model of the 
Audicle is integrated with the ChucK programming language 
and inherits many of its fundamental properties, including: 
decoupling of data-flow and time, concurrency, and modularity 
for on-the-fly programming.  We discuss the main components 
of the Audicle, and show that it not only provides a useful class 
of programming tools for real-time composition and 
performances, but also motivates a new type of on-the-fly 
programming aesthetic – one of visualizing the audio 
programming process. 

1. Introduction 
Software environments play a pivotal role in the creation and 

performance of computer music.  Programming environments 
provide the setting to design/implement synthesis and 

compositional algorithms.  Runtime environments realize and 
render these algorithms into sound (and images), and allow 
performers to interact with the system, often in real-time.  In 
this work, we present a new type of audio programming 
environment, called the Audicle, which combines the 
programmability of programming environments and the 
immediate feedback of runtime environments.  The Audicle is 
an integration of "smart" concurrent editor, compiler, virtual 
machine, and visualizations – all operating in a single on-the-
fly environment.  This has the potential to fundamentally 
enhance the way we write, visualize, and interact with audio 
programs. 

 
Figure 1.  Completing the loop.  The Audicle bridges 
runtime and development by integrating elements of both. 

The Audicle differs from traditional environments in the 
following ways.  Conceptually, it brings the editor and 
compiler into the runtime environment (Figure 1), which 
allows a fundamentally greater level of interactivity in the 
programming process.  Secondly, it is tightly coupled with a 
programming language – in this case, ChucK, a concurrent and 
on-the-fly synthesis language (Wang and Cook, 2003).  This 
coupling is advantageous because it leverages and enhances the 
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desirable ChucK properties of precise timing and concurrency.  
This is different from systems like Max and Pure Data, where 
the environment essentially is the language.  ChucK is fully 
functional by itself – the Audicle aims to complement the 
language and enhances the ability to rapidly develop and 
visualize programs both offline and on-the-fly.  Thirdly, the 
Audicle embodies the aesthetic and mentality of visualizing the 
process of programming and the state of the runtime system. 

This paper is organized as follows.  In Section 2, we present 
the goals of the Audicle and also examine the background of 
existing programming and runtime environments (both audio 
and non-audio).  The Audicle’s runtime compiler, virtual 
machine, and much of the concurrent editor semantics are 
based on our earlier work with ChucK and on-the-fly 
programming.  In Section 3, we overview the key features and 
properties of ChucK, as well as the challenges of on-the-fly 
programming as they pertain to the Audicle.  In Section 4, we 
present the design of the Audicle, introduce the Audicube, and 
discuss its properties and implementation.  In Section 5, we 
address how these ideas motivate a new kind of on-the-fly 
programming aesthetic, and discuss future work. 

2. Background 
2.1 Goals of the Audicle 

A simple but important question to answer is: why 
investigate the programming environment? We believe that the 
programming language and the environment it is used with 
fundamentally influence how we think about and write 
programs.  ChucK provided a new way of reasoning about 
time, data-flow, and concurrency in a programming language.  
The Audicle is designed to enhance and complement these 
features, and make them more accessible, faster, and perhaps 
more enjoyable to use. 

Context-sensitive. The goal of the editor is to allow 
concurrent code to be clearly entered and represented.  Also, it 
should have knowledge of the deep structure of the program 
and runtime information (such as program state and profiling 
hints) – and use this information to aid the programmer to more 
easily write code.  We call this a concurrent, “smart” editor. 

On-the-fly.  On-the-fly programming is the practice of coding 
at runtime – while the program is running.  The Audicle aims to 
complete the development/runtime loop by bringing the editor 
and compiler to the virtual machine, and vice versa.  By 
making them accessible to each other, new and faster interfaces 
and paradigms for runtime audio programming may emerge. 

Different views.  Having different views of the same program 
can be very useful to writing and fine-tuning code.  The 
Audicle should allow a program to be viewed and manipulated 
in many ways: as concurrent code, syntactic/semantic 
representations, or timing and synchronizations.  Additionally, 
the Audicle is an observation or visualization of the process of 
on-the-fly programming, giving it the potential to be a useful, 
general-purpose performance or educational tool. 

Minimal.  The Audicle provides a minimal interface, and rely 
on the underlying interactions of the language and the multiple 
viewing models to achieve a great deal of expressiveness and 
power, without imposing a particular programming style. 

2.2 Existing Environments 
An environment, in the context of this investigation, is 

defined as a comprehensive software setting in which 
programming and/or runtime control is carried out and/or 
facilitated.  There have been many environments developed for 
programming, performance, and composition, as well as 
several environments not specifically intended for audio and 
music that are also useful to examine. 

Programming environments provide a setting to write and 
edit programs at development time, and often include a 
compiler and debugger.  Examples include graphical 
environments such as Max (Puckette, 1991) and Pure Data 
(Puckette, 1996), integrated development environments (IDE’s) 
for text-based languages such as Java, C/C++, Nyquist 
(Dannenberg, 1997), and SuperCollider (McCartney, 1996), 
and software frameworks such as Ptolemy (Lee et al. 2003).  
These environments allow code, flow graphs, and other 
programming constructs to be entered, compiled, and run (in 
separate phases). 

Runtime environments, on the other hand, provide an engine 
and a related set of interface elements for manipulating 
parameters at runtime (and often in real-time).  The graphical 
front-ends of Max, as well as Real-Time CSOUND (Vercoe, 
1990), Aura (Dannenberg and Brandt, 1996), and more 
recently, Soundium 2 (Schubiger and Muller, 2003) are good 
examples of runtime environments.  These environments 
compute audio in real-time, taking in data from input devices 
and UI elements, and may also display graphical or video 
feedback. 

On-the-fly environments possess elements of both 
programming and runtime systems – and most importantly, the 
runtime capability to modify the structure and logic of the 
executing program itself.  Several existing environments 
possess varying degrees of on-the-fly capabilities.  Max and Pd 
give programmers limited ability to change their patches at 
runtime.  The SuperCollider programming environment allows 
for synthesis patches to be sent and added to a server in real-
time.  Another interesting system for runtime graphical and 
virtual-reality programming is Alice (Pausch et. al. 1995), 
which allows users to create a virtual world, and to add and 
modify behaviors using a high-level scripting language (Python 
in this case) on-the-fly.  This rapid-prototyping graphical 
environment is notable for having no hard distinction between 
development and runtime.  Similarly, MATLAB (Mathworks), 
while not intended as a real-time programming tool, has a 
command line that directly uses statements from the language 
and embodies a similar immediate run aesthetic.  However, 
many existing environments lack a unified timing framework.  

3. ChucK + On-the-fly Programming 
The Audicle is based on our previous work with the ChucK 

programming language and on-the-fly programming.  ChucK’s 
timed-concurrency model and our operational semantics for on-
the-fly programming help form the foundation for the Audicle.  
In this section, we overview the features of ChucK (we do not 
discuss detailed implementation here) and the semantics of on-
the-fly programming that are pertinent to the Audicle. 



In Proceedings of the 2004 International Computer Music Conference 

3.1 ChucK 
ChucK is a strongly-timed, concurrent, on-the-fly audio 

programming language (Wang and Cook, 2003).  It is not based 
on a single existing language but is built from the ground up.  
ChucK code is type-checked, emitted over a special virtual 
instruction set, and run in a virtual machine with a native audio 
engine and a user-level scheduler.  The following ChucK 
features and properties are pertinent to the Audicle: 

• A straightforward way to connect data-flow / unit generators.   
• A sample-synchronous timing mechanism that provides a 
consistent, unified view and control of time – embedded directly 
in the program flow.  Time is decoupled from data-flow. 
• A cooperative multi-tasking, concurrent programming model 
based on time that allows programmers to add concurrency 
easily and scalably.  Synchronization is accurately and 
automatically derived from the timing mechanism. 
• Multiple, simultaneous, arbitrary, and dynamically 
programmable control rates via timing and concurrency. 
• A compiler and virtual machine that run in the same process, 
both accessible from within the language. 

ChucK’s programming model addresses several problems in 
computer music programming: representation, level of control 
for data-flow and time, and concurrency.  We summarize the 
features and properties of ChucK in the context of these areas.  
In doing so, we lay the foundation for describing the semantics 
of on-the-fly programming and the Audicle. 

Representation.  At the heart of the syntax is the ChucK 
operator: a group of related operators (=>, ->) that denote 
interconnection and direction of data-flow.  A unit generator 
(ugen) patch can be quickly and clearly constructed by using => 
to connect ugen’s in a left-to-right manner (Figure 2).  Unit 
generators logically compute one sample at a time.  Parameters 
to the unit generators can also be modified using =>.  By 
default, => deals only with data-flow (and control data), leaving 
time to the ChucK timing mechanism. 

 
 

(a) 

noise n => biquad f => dac; 
(b) 

Figure 2. (a) A noise-filter patch using three unit generators.  
(b) ChucK statement representing the patch.  dac is the 
global sound output variable. 

Levels of Control.  In the context of audio programming, we 
are concerned not only with control over data but also over 
time.  The latter deals with control and audio rates, and the 
manner in which time is reasoned about in the language.  In 
ChucK, the key to having a flexible level of control lies in the 
timing mechanism, which consists of two parts.  First, time 
(time) and duration (dur) are native types in the language.  
Time refers to a point in time, whereas duration is a finite 
amount of time.  Basic duration variables are provided by 
default: samp (the duration between successive samples), ms 
(millisecond), second, minute, hour, day, and week.  

Additional durations (and times) can be inductively constructed 
by performing arithmetic on existing time and duration values. 

Secondly, there is a special keyword now (of type time) that 
holds the current ChucK time, which starts from 0 (at the 
beginning of the program execution).  now is the key to 
reasoning about and manipulating time in ChucK.  Programs 
can read the globally consistent ChucK time by reading the 
value of now.  Also, assigning time values or adding duration 
values to now causes time to advance. As an important side-
effect, this operation causes the current process to block 
(allowing audio to compute) until now actually reaches the 
desired point in time. (Figure 3)  

// construct a unit generator patch 
noise n => biquad f => dac; 
 
// lo : up
while( true ) { 

op date biquad every 100 ms 

    // sweep biquad center frequency  
    200 + 400 * math.sin(now*FC) => f.freq; 

 
    // advance time by 100 ms 
    100::ms +=> now; 
} 

Figure 3. A control loop.  The => ChucK operator is used to 
change a filter’s center frequency.  The last line in the loop 
causes time to advance by 100 milliseconds – this can be 
thought of as the control rate. 

The mechanism provides a consistent, sample-synchronous 
view of time and embeds timing control directly in the code.  
This formal correspondence between timing and code makes 
programs easier to write and maintain, and fulfills several 
properties (i.e. deterministic order of computation) – therefore, 
ChucK is said to be strongly-timed.  Furthermore, data-flow is 
decoupled from time, and control rates are fully throttled by the 
programmer.  Audio rates, control rates, and high-level musical 
timing are unified under the same mechanism. 

Concurrent Audio Programming.  The intuitive goal of 
concurrent audio programming is straightforward: to write 
concurrent code that shares data as well as time (Figure 4). 

DAC White 
Noise 

BiQuad 
Filter  

 
impulse i => biquad f => dac;

 
 
 
 
 
 

while( true ) 
{ 
 // impulse train
 1.0 => i.value; 
 // advance time 
 50::samp +=>now;
} 

while( true ) 
{ 
  // sweep 
  next_f() => 
    f.freq; 
  80:ms +=> now; 
} 

while( true ) 
{ 
 // poll 
 sensor[8] 
   = ene> list r; 
.5::second+=>now;
} 

Figure 4.  Unit generator patch with three concurrent paths 
of execution at different control rates (from left to right, 
control period = 50 samples, 80 millisecond, 1/2 second) 

ChucK introduced the concepts of shreds and the shreduler.  
A shred is a concurrent entity like a thread.  But unlike threads, 
a shred is a deterministic shred of computation, synchronized 
by time.  Each of the concurrent paths of execution in Figure 4 
can be realized by a shred.  They can reside in separate source 
files or be dynamically spawned (sporked) from a parent shred.   
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The key insight to understanding concurrency in ChucK is 
that shreds are automatically synchronized by time. Two 
independent shreds can execute with precise timing relative to 
each other and to the virtual machine, without any knowledge 
of each other.  This is a powerful mechanism for specifying and 
reasoning about time locally and globally. 

This semantic resembles, and yet diverges from concurrency 
models found in languages such as Formula (Anderson and 
Kuivila, 1991), Nyquist, and SuperCollider.  At the lowest 
level, Chuck’s timing/concurrency model is fully deterministic 
and data-driven (by samples or any other granularity), and is 
not tightly coupled with any a priori model (such as musical 
constructs in Formula). ChucK provides a fundamentally 
expressive programming model in the sense that timing control 
is embedded directly in the program flow (instead of only as 
parameters or events, as in the above languages), enabling 
precise timing control over the computational stream itself. 

3.2 On-the-fly Programming 
 On-the-fly programming is the practice of adding or 

modifying code at runtime and presents several challenges that 
include modularity, timing, manageability, and flexibility 
(Wang and Cook, 2004).  Our previous work described a 
formal on-the-fly programming model based on the timing and 
concurrency of ChucK and included both an external and an 
internal semantic, as well as an on-the-fly performance 
aesthetic (Figure 5).  The external interface uses shreds to 
provide modularity.  The internal semantic provides a means to 
precisely synchronize the shreds using the timing mechanism.  
The Audicle both leverages this model and facilitates its usage. 

 
Figure 5.  An instance of the on-the-fly performance 
aesthetic. Each computer is projected at runtime, allowing 
for the programming process to be visually communicated 
to the audience, constructing a live correspondence of the 
intentions to the outcome. 

External Interface.  The on-the-fly programming model, at the 
high-level, can be described in the following way.  A ChucK 
virtual machine begins execution, generating samples (as 
necessary), keeping time, and waiting for incoming shreds. A 
new shred can be assimilated on-the-fly into the virtual 
machine, sharing the memory address space, the global timing 
mechanism, and is said to be active.  Similarly, an active shred 
can be dissimilated (removed from the virtual machine), 
suspended, or replaced by another shred.  This interface is 
designed to be simple, and delegates the actual timing and 
synchronization logic to the code within the shred. 

The high level commands to the external interface are listed 
below.  They can be invoked on the command-line, in ChucK 
programs (as functions calls to the machine and compiler 

objects), over the network, or – as we will see in Section 4 – 
using the Audicle. 

• Execute – starts a new instance of a virtual machine in a 
new address space (in an infinite time-loop). 

• Add – type-checks, compiles, and sporks a new shred (from 
ChucK source file, a string containing ChucK code, or a 
pre-compiled shred). 

• Remove – removes a shred by ID from the virtual machine. 
• Suspend – suspends and places a shred on the shredulers’s 

suspended list. 
• Resume – resumes a suspended shred.  The shred will begin 

execution at the suspended point in the code. 
• Replace – invokes remove followed by an add. 
• Status – queries the virtual machine for the following 

information: (1) a list of active shred ID's, source, and 
duration since assimilation (spork time), (2) VM state: 
current shreduler timeline, CPU usage, synthesis resources. 

As an example, Figure 6 shows code that adds a new shred 
from file to the virtual machine using two different methods. 

# add foo.ck (a VM should b
shell%> chuck --add foo.ck 

e listening already) 

(a) 
// compile shred from file "foo.ck" 
compiler.compile( “foo.ck” ) => code foo; 
// advance time b
500::ms +=> now; 

y 500 milliseconds 

// spork "foo" 
machine.spork( foo ) => shred s_foo; 

(b) 
Figure 6. Two examples of using the runtime shred 
management interface: (a) from a command-line shell, (b) 
from within a shred, which has precise timing control. 

Internal Semantics.  The internal semantics of our on-the-fly 
model deal with the issue of precise timing and synchronization 
between on-the-fly modules (shreds).  In our model, the 
semantics are natural extensions of the ChucK timing 
mechanism.  By querying and manipulating time using the 
special variable now, the programmer can determine the current 
time, and specify how the code should respond.  By the 
properties of ChucK timing and concurrency: (1) now always 
holds the current ChucK time. (2) Changing the value of now 
advances time and has the side effect of blocking the current 
shred (allowing audio and other shreds to compute) until now 
“reaches” the desired time.  (3) If t is of type time, t => now 
advances time until t equals now. (4) If d is a duration, d +=> 
now advances time by d.  Examples of time-synchronization: 
• Let time pass for some duration (in this case 10 seconds) 

now + 10::second => now; 
  // or simply: 
10::second +=> now; 

• Synchronize to some absolute time t  
t => now; 

• Synchronize to some absolute  t (or after)  time
if( t < now ) t => now; 

• Synchronize to the beginning of next period of duration T 
120::ms => dur T;      // period to synchronize to 
T – (now % T) +=> now; // advance time by remainder 

• Synchronize to the beginning of next period, plus offset D 
T – (now % T) + D +=> now; 

• Start as soon as possible 
// no code necessary 
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4. The Audicle 
The Audicle is a graphical, on-the-fly audio programming 

environment. It is based on the semantics of on-the-fly 
programming and ChucK’s strongly-timed concurrency model. 
This powerful feature of the language is extended in the 
Audicle in that concurrency is also visualized.  Thus, the 
Audicle’s graphical aesthetic is given significant consideration 
in the design: it is to be visually bold, colorful, and open to 
customization.  It aims to provide an orthogonal set of tools and 
visualizations that can be combined into more complex 
configurations and usages.  Much of the information is 
conveyed by 3D shapes, which can be viewed from virtually 
any viewpoint or distance.  The Audicle is rendered exclusively 
using 3D graphics (no external windowing system is involved), 
running in full-screen or windowed mode.  We present its 
design and properties (Sections 4.1 and 4.2) and discuss its 
implementation (Section 4.3).  We show that the Audicle is 
capable of achieving expressive, high-quality audio synthesis in 
combination with high-performance visualizations. 

4.1 Design of the Audicle 
In the Audicle, there is no distinction between development 

and runtime: all components are fully accessible at runtime.  
This integration is based on the ChucK compiler and virtual 
machine – augmented with a smart editor and interfaces for 
viewing/manipulating concurrency, timing, and system state.  
The design philosophy is one of runtime cohesion of phases 
and visualizations of system state. 

As in ChucK, data-flow and time are fundamentally 
decoupled, leading to more expressive and clearer audio 
programs.  Also, the Audicle’s architecture is based on a 
decoupled simulation model for virtual reality (Shaw et. al, 
1992).  In this model, the simulation can operate at an arbitrary 
rate independent of the graphics rendering-rate, leading to 
smoother graphics and more flexibility in the simulation 
algorithms.  In the Audicle, audio synthesis, graphics, and 
simulation are loosely-coupled, with the highest priority given 
to audio computations and the virtual machine. 

Out of the desire to provide a simple, “graspable” virtual 
environment and interface, we associate the Audicle with a 
simple geometric shape.  The various parts of the Audicle are 
mapped and displayed on the faces of a virtual cube, called the 
Audicube (Figure 7a).  At any time, the user can interact with 
one face, and have the ability to move to others faces by using 
hotkeys (USER_KEY+[up|down|left|right|face#]), graphical 
interface, Audicle shell commands (%> face 4  -or- %> face 
shredder), or even ChucK statements (audicle.face(4);). 

There is a slim command-line console (Figure 7b) that can be 
invoked to appear over the currently active face.  The console 
resembles that of MATLAB, where statements of the 
underlying language can be entered directly on the command-
line.  The key difference is that the Audicle console also has a 
strong notion of time.  For example, it is possible to write a 
console command that loops and fires off N number of shreds, 
100ms apart (see example in Figure 7b).  Indeed, the Audicle 
console itself is a powerful on-the-fly programming tool. 

On the Audicube, there are 5 primary faces plus one blank 
tabula rasa face for real-time graphics or for use as an 
audio/visual scratchpad.  These faces are listed below and 
discussed in detail in Section 4.2. 

• Concurrent Editor – “smart” editor interface 
• Compiler-space – deep structure of the program 
• VM-space – system resource and I/O management 
• The Shredder – shred and concurrency management 
• Time and Timing (TnT) – time management 
• Tabula Rasa – blank slate (“anything goes here”) 

 
(a) 

 
(b) 

Figure 7. (a) Faces of the Audicube.  The ‘cube can be 
“unrolled”, or “stacked” into a networked configuration. 
The six faces are shown on the two sides.  (b) Audicle 
Console.  The interface (left) can be used to graphically 
navigate the Audicube.  The on-the-fly command prompt 
(right) accepts ChucK statements and Audicle commands 
(built using ChucK macros). 

Additionally, the Audicle is designed to be a networked, 
collaborative development and performance environment.  The 
simplest type of collaboration involves several Audiclae 
connected over a network sharing a central virtual machine for 
audio synthesis and computation.  In this scheme, precise 
timing can be preserved.  For example, each Audicle can send 
pieces of ChucK code over TCP/IP to be compiled and 
executed on a central Audicle, with precise timing embedded 
within the code.  Concurrency provides modularity and 
organization, while the timing mechanism ensures that all 
modules can operate together with correct timing and other 
synchronizations (i.e. asynchronous events).  As part of future 
work, we will investigate more complex Audiclae topologies. 
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4.2 Faces of the Audicube 
Concurrent Editor.  The editor is the primary interface to 
enter/edit code (an alternative is the console).  It is on-the-fly – 
new code can be written and assimilated while existing code is 
running in the virtual machine.  The editor is also concurrent, 
allowing programmers to create both serial and parallel code 
blocks by constructing a flow-graph of code (Figure 9a).  A 
new concurrent shred can be introduced by adding a code 
block.  Directed edges in the graph determine the parent/child 
relationship between concurrent code blocks.  Furthermore, 
blocks can also be named and reused.  

There is an one-to-one correspondence between concurrent 
ChucK code and the flow graph – the edges in the graph map to 
spork statements in ChucK, allowing for any ChucK program 
to be uniquely represented as code or as a graph.  Also, the 
editor automatically visualizes ChucK statements using simple 
objects (Figure 9b).  The result is a 3-dimensional, Max/Pd-like 
sub-environment with a very important underlying difference: 
this visualization only displays data-flow, leaving time to be 
dealt with separately in the code using ChucK’s timing 
mechanism, again separating data and time. 

 
(a) 

 
(b) 

Figure 8.  Concurrent Editor.  (a) The editor allows the 
programmer to construct flow-graphs of concurrent code.  Arrows 
represent sporking of new shreds.  Code can be on-the-fly edited, 
tested, compiled, and sporked using the editor or the console. (b) 
ChucK code is entered (left).  In the same space, parts of the 
program structure are visualized.  In this example, the two simple 
patches (left top) are automatically represented by similarly-
colored objects (right).   

The editor is "smart" in several senses.  First, it has access to 
the deep structure of the existing ChucK program, including 
type and timing information, in addition to results gathered 
from live background processing.  The editor can use this 
information to suggest potential statement completions (class 
members, arguments, etc.). This is similar to features in 
existing commercial integrated development environments 
(IDE’s) such as Microsoft Visual Studio.  Also, the editor 
serves an important ChucK-specific task – that of assisting 
resolutions of the massively-overloaded ChucK operator. 

Second, since ChucK programs are type-checked and 
emitted into virtual ChucK instructions, the editor can serve as 
an “on-the-fly debugger”. It is possible to halt the program at 
any instruction and change the code before or after it. 

Finally, there are various options for running and testing the 
code.  (One useful option is to “test-run” the code in a 
protected “sandbox” environment)  These can be accessed via 
the graphical interface buttons, keyboard shortcuts, or through 
the Audicle console.   

Compiler-space.  The compiler-space face of the Audicle 
allows viewing of the deep structure of the program gathered 
during compilation.  Many aspects of the program structure can 
be visualized here.  The syntax tree, with typing annotations is 
available for all code segments.  One can see the ChucK virtual 
instructions emitted from a piece of code.  Also, the user can 
examine global variables, or select a shred (from the console or 
the Shredder) and examine values of local variables during 
runtime.  It is possible to traverse the compiler-space in 3D and 
to select code segments to be displayed in the editor. 

 
Figure 9.  Compiler-space Explorer. In this example, the real-
time shred-sporking pattern for a code segment is shown, with 
red objects representing points in the code where shreds were 
sporked, and blue and green representing paths of execution.  The 
structure grows dynamically.  Clicking on the objects invokes 
appropriate actions (viewing code or switching to another face). 

The Shredder.  The Shredder visualizes and manages shreds 
and concurrency.  While it is possible to do this from within the 
language or via the console, the Shredder provides a more 
straightforward (and often more timely) interface to 
add/remove/modify shreds.  The Shredder operations can also 
be mapped to input devices, allowing shreds to be managed 
with minimal typing and other user-introduced latency. 
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Programmers can view all the shreds in the virtual machine 
using a text-based list and/or a graphical tree-view (Figure 10).  
Because code can generate code or originate from other 
Audiclae, the shreds in the Shredder are identified as local, 
generated, or remote.  Additionally, shred id/name, creation 
time, number of cycles computed, number of context switches, 
and state (active, suspended) are available for each shred. 

 
(a) 

 
(b) 

Figure 10.  The Shredder. (a) Visualization of shred 
activity.  Larger spheres are parent shreds.  The smaller 
child shreds “orbit” the parents at a rate proportional to their 
current average control rate.  The names refer to the parents. 
(b) On-the-fly timetable of shreds in the virtual machine. 

An important use of this mechanism is to monitor and 
manage currently executing shreds, and to identify hanging or 
non-cooperative shreds.   For example, if the system runs a 
shred containing an infinite loop, it will fail to yield and cause 
the virtual machine execution unit to hang indefinitely.  This 
type of behavior can never be reliably detected at compile time 
(the Halting Problem).  However, the on-the-fly programmer 
can identify and remove misbehaving shreds from the virtual 
machine manually by suspending them in the Shredder (and 
potentially debugging them immediately in the editor), 
resulting in minimal interruption to the session.  While this 
recovery mechanism is far from perfect, it is far more 
advantageous over killing the system and restarting.  Similarly, 
it can help the programmer optimize the system by identifying 
shreds that are consuming too much CPU time. 

Time and Timing (TnT).  This face is a visualization of 
shreduling at runtime.  It is like an electrocardiogram (EKG).  
Parallel lines, representing active shreds, move along in ChucK 

system time. The nature of the time-based concurrency in 
ChucK implies that shreds only compute at discrete points in 
time, and must explicitly allow time to advance.  When a shred 
computes, a spike is displayed on the corresponding line.  The 
height of the spike is mapped to some measure of resources 
consumption (such as computation cycles).  (Figure 11) 

 

Figure 11.  (left) EKG of the shreds.  Spike height is a quick 
estimate of computations per execution in time.  (right) 
Clock array visualization of average shred control rates. 

This visualization presents a way to gain a high-level glance 
at the overall timing behavior.  For example, it is easy to see 
how frequently each part of the system is computing (an 
effective view of relative control rates) and gain a rough idea of 
resources used as a function of time. 

VM-space.  The VM-space contains useful (or interesting) 
runtime information and statistics about the Audicle and the 
virtual machine.  It is responsible for management of input 
devices, interface protocols (MIDI, OSC, SKINI), dynamic 
linking, and network connectivity (including establishing 
connections with remote Audiclae).  Additionally, CPU load, 
unit generator resources, and analysis output (such as FFT and 
audio feature extraction), can be displayed here. 

 
Figure 12.  The VM-space Explorer.  In this case, we see 
the input waveform (top-left) and its FFT magnitude 
spectrum (bottom-left), as well as resource usage (right). 

Tabula Rasa.  The "blank slate" face is actually not limited to 
one face, but any number of faces as requested by the 
programmer.  Content is fully programmable using ChucK and 
the OpenGL API. In addition, the ChucK graphical 
programming interface includes access to the Audicle graphics 
and windowing engines, along with its set of minimal user 
interface widgets (used in the rest of the Audicle). This space 
makes the Audicle suitable for rapidly developing custom, 
high-performance graphical front-ends for synthesis, analysis, 
and performance. 
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4.3 Implementation Overview 
The Audicle’s implementation consists of a graphical 

rendering engine, a low-latency I/O & networking framework, 
a minimal windowing system, and internal logic with interface 
into the ChucK virtual machine.  The implementation (in 
C/C++, with some high-level components are written in 
ChucK) reuses many data structures from ChucK’s compiler 
and virtual machine.  All components run in the same address 
space. 

The graphics-rendering engine of the Audicle (implemented 
in the OpenGL API) runs on Mac OS X, Linux, and Windows. 
Using 3-D graphics exclusively with real-time audio synthesis 
can be highly feasible.  With even modest graphics hardware 
support, the vast majority of the rendering can take place on the 
GPU (graphics processing unit), leaving CPU cycles (85-95%) 
for synthesis.  Using custom-built, minimal user interface 
elements, we can handle user-interface events more efficiently 
than the windowing sub-system, and with potentially better 
responsiveness.  Because the rendering-rate stays relatively 
constant (at 30+ frame/second), the CPU usage stays constant 
and is less subject to large bursts due to user interface 
processing.  Also, 3D graphics is flexible.  It can emulate 2D 
when needed, and also provides significant viewing freedom. 

5. Conclusions and Future Work 
On-the-fly programming opens the potential for interesting 

interactions and visualizations in the audio programming 
process.  Through the different faces in the Audicube, the 
programmer, composer, and performer can develop code in a 
truly concurrent editor, and simultaneously visualize its 
behavior in terms of concurrency, timing, and its runtime 
interactions with the rest of the system.  Concurrency, a natural 
and useful way to represent many concepts in sound and music, 
is captured by ChucK, and visualized by the Audicle. 

The integrated, on-the-fly environment of the Audicle 
completes the development-to-runtime loop.  The result is 
greater than the sum of its parts.  The expressive power of 
coding is made available for runtime manipulation.  In turn, on-
the-fly information from runtime aids the development process, 
expanding the horizons of both.  We gain the advantages of 
immediate feedback in an always-modifiable continuum. 

Additionally, the Audicle motivates a new kind of audio 
programming mentality – one involving continuous exploration 
and experimentation.  Recall our points on on-the-fly 
programming from Section 3.2.  The Audicle further motivates 
this notion of runtime programmability as a new form of 
performance aesthetic, where code is used to expressively 
control the synthesis and the process is conveyed to the 
audience.  It also provides a platform where a degree of 
virtuosity can evolve.  Due to its visual nature and immediate 
feedback, the Audicle can also be a useful compositional 
environment, where the composer can incrementally work on 
concurrent parts of a program piece.  Similarly, it could 
function as an educational tool, for teaching synthesis, audio 
programming, or multimedia. 

Potentially, the Audicle is the beginning of a new class of 
environments for developing programs on-the-fly, as well as 

for visualizing the audio programming process.  We look 
forward to experimenting with new interfaces for on-the-fly 
editing and code control, and new types of visualizations.  
Also, future work can investigate the technical and aesthetic 
aspects of collaborations between remotely connected 
Audiclae, as well as devise new on-the-fly programming 
systems and environments. 

http://audicle.cs.princeton.edu/ 
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