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ABSTRACT 
A crucial set of decisions in digital musical instrument design 
deals with choosing mappings between parameters controlled by 
the performer and the synthesis algorithms that actually generate 
sound. Feature-based synthesis offers a way to parameterize audio 
synthesis in terms of the quantifiable perceptual characteristics, or 
features, the performer wishes the sound to take on. Techniques 
for accomplishing such mappings and enabling feature-based 
synthesis to be performed in real time are discussed. An example 
is given of how a real-time performance system might be designed 
to take advantage of feature-based synthesis’s ability to provide 
perceptually meaningful control over a large number of synthesis 
parameters. 
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1. INTRODUCTION 
How best to map from performer intention to sonic output is a 
fundamental question in the design of musical instruments 
intended to be played in real time [4]. In those cases where an 
electronic interface is used to control a software synthesizer, the 
problem often reduces to how best to map from some set of 
continuous or discrete control signals to a set of synthesis 
parameters that provide control over the signal processing 
algorithms that generate the synthesizer's audio. In some cases, 
these synthesis parameters have a clear, one-dimensional, easily 
learned effect on the perceptual content of the sound. An example 
might be the frequency of an oscillator, which (often) maps 
clearly to the percept of pitch. Sophisticated synthesis algorithms, 
however, may have parameters whose effects may be individually 
quite subtle, unpredictable, or dependent on the settings of other 
parameters. Furthermore, there may be a large number of these 
parameters - more than can be explicitly controlled in real-time by 
a human being [7].  

As a result, real-time control signals are frequently mapped only 

to a small number of parameters, or a small number of controller 
parameters are mapped onto a larger number of synthesis 
parameters. In the former case, the full expressive range of the 
controller-synthesizer pairing may not be exploited. In the latter 
case, a satisfactory one-to-many mapping must be determined. 
This can be done by hand by the instrument designer, using what 
is likely to be a time-consuming (although potentially insight-
provoking) process of trial and error. Alternatively, the mapping 
can be determined automatically by the computer, according to 
some set of criteria. When designing a system that performs an 
automatic mapping of this kind, the crucial question becomes how 
to define the criteria that the computer uses to design the mapping.  

 
Figure 1. A performer can control a few synthesizer 

parameters directly, continuously making adjustments to 
make perception match intention. 

 
Figure 2. Alternatively, a performer can control many 

parameters using only a few control signals by means of an 
intervening mapping layer. 
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Our approach looks to research in psychoacoustics and music 
information retrieval to answer this question. Many music 
information retrieval systems begin by extracting feature vectors 
of perceptually motivated features describing successive frames of 
audio. The individual features are simply numbers describing the 
audio frame in terms of its characteristics along some set of 
perceptual dimensions such as loudness, timbre, brightness, pitch, 
and harmonicity. The goal of frame-level feature-based synthesis 
is to, given values for an arbitrary set of these features and the 
ability to compute those features on new audio, produce a frame 
of audio that manifests those feature values. In other words, 
feature-based synthesis allows us to more directly parameterize 
audio synthesis in terms of its quantifiable perceptual content. 

2. PREVIOUS WORK 
There have been numerous attempts to automatically find 
mappings from a few control parameters to many synthesizer 
parameters over the years. Lee and Wessel [7] and Johnson and 
Gounaropoulos [6] (among many others) have used neural 
networks to try to learn user-defined timbre spaces. More 
recently, Bencina [1] implemented a sort of mapping-by-example 
approach based on nearest neighbor interpolation.  

The importance of intelligent parameter mapping to gestural 
control has been emphasized by (among others) Hunt, Wanderley, 
and Verfaille [4, 12, 13]. Verfaille and Arfib [11] specifically 
proposed including a feature-aware mapping layer to add an 
adaptive component to digital audio effects control. 

Similar ideas to those used in feature-based synthesis have been 
used in numerous papers by Andrew Horner et al [3, 14], although 
to different purposes and in a less general way. Much recent work 
on concatenative synthesis and audio mosaicing by Diemo 
Schwarz and others pursue similar goals using methods similar to 
feature-based synthesis, although applied to samples of previously 
recorded material [9].  

3. FEATURE-BASED SYNTHESIS 

 
Figure 3. Overall system architecture. 

We have implemented a general framework for synthesizing audio 
frame by frame to match any set of feature values as they change 
over time [2]. Our architecture divides the tasks to be performed 
between four main modular components: parametric synthesizers, 
feature evaluators, distance metrics, and parameter optimizers. 
Feature evaluators take a frame of audio as input and output an n-
dimensional vector of real-valued features. Parametric 
synthesizers take an m-dimensional vector of real-valued inputs 
and output a frame of audio. Distance metrics define some 

arbitrarily complex function that determines how “similar” two 
feature or parameter vectors are. Finally, parameter optimizers 
determine how best to map from an arbitrary vector of feature 
values v to a vector of synthesis parameters u’. 
An instrument designer can connect this framework to a hardware 
controller that sends various control parameters to the computer in 
real-time by choosing a set of features and a synthesis algorithm, 
mapping the control signal values directly onto feature values, and 
choosing an appropriate parameter optimizer and distance metric 
(more on this step below). So long as the parameter optimizer 
does not take too long to find a set of synthesis parameters that 
produces audio with the desired feature values, the system can be 
used to produce sound in real time. Alternatively, feature vectors 
can be extracted from sounds generated acoustically by the 
performer (vocal sounds, for example) and used to control the 
synthesis algorithm. The resulting audio will match whatever 
perceptual content in the performer-generated audio is captured by 
the features used, but will likely sound quite different in ways 
characteristic of the synthesizer used. See Janer [5] and Loscos 
and Aussenac [8] for feature/synthesizer pairing-specific 
examples of this sort of approach. 

3.1 Distance Metrics 
Distance metrics judge the similarity of two vectors of features or 
parameters. They may be defined in any arbitrary way, but a 
natural choice is the LN norm of the difference of the two vectors. 
The LN norm is defined as the Nth root of the sum of the Nth 
powers of each element, so for example the Euclidean norm is 
identical to L2, and the Manhattan norm (simply the sum of abso-
lute values on each dimension) is L1. We provide a standard 
metric that implements these norms and allows higher or lower 
weights to be assigned to more or less important features or 
parameters. 

For certain synthesizers and small to moderately sized feature sets 
there may be numerous quite dissimilar parameter settings that 
produce audio with similar feature characteristics. Rapidly 
switching between these parameter settings in pursuit of small 
improvements in feature distance can lead to undesirable artifacts, 
and so our framework allows for the calculation of distances in 
parameter space as well as feature space. This parameter distance 
can be combined with the feature distance as a secondary criterion 
in parameter selection in the interests of smoother-sounding 
audio. For example, when looking for a good parameter set one 
might give parameter distance 1/4 the weight of feature distance. 

Although these metrics can be created by hand with a minimum of 
effort, our system also allows each feature evaluator to define its 
own default distance metric that attempts to more accurately 
capture the overall perceptual distance between two feature 
vectors extracted using that feature evaluator. Synthesizers are 
also able to define default metrics, for example by weighting 
parameters with more dramatic effects more heavily than subtler 
parameters. 

3.2 Parameter Optimizers 
The parameter optimizers used in our framework are not 
necessarily expected to have any a priori knowledge about 
possible relationships between synthesis parameters and feature 
values. Typically, they apply an iterative search algorithm such as 
simulated annealing to minimize the distance between the target 
feature values and the feature values obtained by analyzing the 
synthesizer’s output. Such algorithms run in a loop such as the 



one shown in figure 4, generating a frame of audio, analyzing that 
audio, comparing the resulting features with the target features 
(and optionally the tested synthesis parameters with the previous 
frame’s synthesis parameters), and using the resulting distance to 
inform the choice of parameters for the next iteration. This 
continues until suitably similar feature and parameter values are 
obtained. 

 
Figure 4. Optimizer loop. 

Although this approach permits a great deal of flexibility and 
robustness, it may take a large number of iterations to find an 
acceptably close match. This presents a problem for real-time 
applications, since a frame of audio must be synthesized and 
analyzed at significant computational cost each iteration. 

4. REAL-TIME PERFORMANCE ISSUES 
In order to speed up the process of finding synthesis parameters 
that produce the desired feature values, we need to incorporate 
some information about the relationships between the parameters 
of the chosen synthesizer and the features we are attempting to 
match. Unfortunately, we are not in general guaranteed that any 
simple, predictable relationship between feature values and 
synthesis parameters exists. The actual relationships may be 
highly nonlinear, rendering them difficult or impossible to 
describe in closed form.  

If, however, we can safely assume that a given set of synthesizer 
parameters will always result in nearly identical feature values, 
then we can perform many expensive synthesis/feature evaluation 
steps offline and store the results in a database for future reuse. As 
long as retrieving these parameter-feature mappings can be done 
efficiently, when we need to obtain good synthesis parameters for 
a given set of feature values quickly (i.e. during live performance) 
we can find the best match cached in the database. These 
parameters can be used to produce audio immediately, or they can 
be used to give our parameter optimizer a head start on the 
process of finding still better parameters. 

4.1 Filling the database 
The simplest approach to getting useful information into the 
database is to simply generate and test random parameter vectors, 
saving the results. This will maximize the variety of parameter 
values represented in our database, but ultimately we are more 
likely to want to maximize the variety of feature values stored. 
Since it may be that large segments of the parameter space map to 

more or less identical feature values while a very small space of 
parameter sets might map to a large portion of the feature space, 
another approach may yield faster results. 

One option is to use an iterative parameter optimizer to search for 
random feature values instead of using random parameter values. 
The optimizer can be set up to cache each parameter-feature 
mapping it tests while searching for the best match for the chosen 
random features. This often has the added bonus of storing an 
entire path through feature space from one feature vector to 
another, and hopefully yields a somewhat more uniform 
distribution of information about feature values in the database. 

4.2 Accessing the database 
Since the number of possible sets of feature values grows 
exponentially in the number of features, it may be that for some 
feature sets a very large number of mappings must be stored to 
provide the maximum speedup. This is especially true if no efforts 
are made to avoid redundancy in the database. Performing a linear 
search through all of the entries in the database may be 
prohibitively expensive, and so some kind of indexing strategy 
must be employed to improve lookup speed. 

 
Figure 5. Points in a 2-D space being projected onto an 

arbitrary axis (dashed line). The tick marks represent the 
boundaries of hash bins into which the points fall. Note that 

points near each other are likely to fall into the same bin. 
We use a very basic version of locality-sensitive hashing to 
perform fast approximate lookups. This technique involves 
projecting each feature vector in the database onto an arbitrary 
unit vector by computing the inner product of thtwo vectors. The 
resulting number is quantized and used as a hash function. As 
each point is added, a reference to it is maintained in a hash table 
indexed by this hash function. To find the nearest neighbor to a 
new point, we determine what hash bin it would map to and check 
the points associated with that bin. In general, points that map to 
the same bin will be closer to each other than other points. 
Although this method does not guarantee that we will find the 
single closest point to the query point in the database, in practice 
it works fairly well, is simple to implement, eliminates the need to 
check large portions of the database, and is quite fast. Its 
robustness can also be improved by checking multiple hashes 
utilizing different projection functions. 

4.3 Direct parameter control 
In some cases the mapping from a synthesizer parameter to 
perception is so clear that no intervening layer is necessary to 
translate from intention to perception. An example might be the 
frequency of an oscillator’s relationship with pitch. To avoid the 



hassle and expense of controlling such factors indirectly using 
feature-based synthesis, we provide a method for directly control-
ling parameters by exempting them from the optimization process. 

5. EXAMPLE PERFORMANCE SYSTEM 
It may be instructive to go over a complex example of a live 
performance system that can be built using feature-based 
synthesis. We first describe the synthesizer used by the system, 
then the features used to control that synthesizer, and finally the 
way in which the user interacts with the system. 

5.1 Synthesizer 
The synthesizer generates sound by summing the weighted 
outputs of a set of four sine oscillators and a white noise generator 
filtered by a resonant bandpass filter. In total, the number of 
parameters needed to control the synthesizer is 11: four for the 
frequencies of the sine oscillators, two for the resonance and 
center frequency of the filter, and five for the relative gains of the 
four oscillators and the filtered noise. The rms power of the 
system’s summed output is kept constant. 

5.2 Features 
The system uses the spectral centroid (a measure of the brightness 
of the sound), the harmonicity (a measure of how strongly pitched 
the sound is), and the first five mel-frequency cepstral coefficients 
(a.k.a. MFCCs, a measure of the coarse shape of the spectrum 
commonly used in speech recognition) to control the synthesizer. 
The implementations come from the MARSYAS framework [10]. 

5.3 Control 
The first two features, centroid and harmonicity, can be controlled 
simply enough by using a pair of sliders, sensors, or even a 
mouse’s x and y coordinates. The MFCCs can be controlled by 
extracting the first five MFCC values from the performer’s voice 
in real time and passing the results as control values to the system. 
The result is that the amplitudes and frequencies of the sine tones 
and filtered noise change to match the spectral shape and 
brightness specified, and the relative amplitudes of oscillator and 
noise adjust to produce the desired harmonicity. Although the 
performer cannot control every aspect of the sound, the result is 
that he or she is able to exert control over a large number of 
parameters in a perceptually meaningful way very quickly. 

6. FUTURE WORK 
Much can still be done to improve the efficiency and usefulness of 
our framework. More feature evaluators and synthesis algorithms 
need to be incorporated and implemented. Further improvements 
to the efficiency of our parameter optimization and database 
algorithms are also in the works. 

One important architectural extension that would make our system 
more flexible would permit meta-features encapsulating how 
features change over time. Another would be to incorporate a 
more sophisticated notion of state into the parametric synthesizer 
architecture, permitting more interesting synthesizers such as 
physical models. We are in the process of deciding on a way to do 
so without violating the assumption that a one-to-many mapping 
between synthesizer parameters is impossible (and therefore 
complicating offline computation of such mappings). 
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