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Abstract

Thispaperdescribesa techniquefor approximatingsoundsthatare
generatedby themotionsof solid objects.Thetechniquebuilds on
previous work in the �eld of physicallybasedanimationthatuses
deformablemodelsto simulatethebehavior of thesolidobjects.As
themotionsof theobjectsarecomputed,theirsurfacesareanalyzed
to determinehow themotionwill induceacousticpressurewavesin
thesurroundingmedium.Our techniquecomputesthepropagation
of thosewaves to the listenerand then usesthe resultsto gener-
atesoundscorrespondingto thebehavior of thesimulatedobjects.
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1 Intr oduction

Oneof theultimategoalsfor computergraphicsis to beableto cre-
aterealisticsyntheticenvironmentsthatareindistinguishablefrom
reality. While enormousprogresshas beenmadein areassuch
asmodelingandrendering,realizingthis broadobjective requires
morethanjust creatingrealisticstaticappearances.We mustalso
developtechniquesfor makingthedynamicaspectsof theenviron-
mentcompellingaswell.

Physically basedanimation techniqueshave proven to be a
highly effective meansfor generatingcompellingmotion. To date,
several feature�lms have includedhigh quality simulatedmotion
for a variety of phenomenaincluding water and clothing. Inter-
active applications,suchasvideogamesandtrainingsimulations,
havealsobegunto makeuseof physicallysimulatedmotion.While
computationallimitationscurrentlyrestrictthetypesof simulations
thatcanbeincludedin real-timeapplications,it is likely thatthese
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Figure1: The top imageshows a multi-exposureimagefrom an
animationof a metalbowl falling onto a hardsurface. The lower
imageshows a spectrogramof the resultingaudiofor the �rst � ve
impacts.

limitations will eventuallybe overcomethrougha combinationof
fasterhardwareandmoreef�cient algorithms.

Althoughthe�eld of computergraphicstraditionallyfocuseson
generatingvisuals,our perceptionof anenvironmentencompasses
othermodalitiesin addition to visual appearance.Becausethese
othermodalitiesplay anintegral part in forming our impressionof
real-world environments,thegraphicsgoalof creatingrealisticsyn-
theticenvironmentsmustalsoencompasstechniquesfor modeling
theperceptionof anenvironmentthroughourothersenses.For ex-
ample,soundplays a large role in determininghow we perceive
events,and it canbe critical to giving the user/viewer a senseof
immersion.

The work presentedin this paperaddressesthe problemof au-
tomaticallygeneratingphysicallyrealisticsoundsfor syntheticen-
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vironments.Ratherthanmakinguseof heuristicmethodsthatare
speci�c to particularobjects,our approachis to employ the same
simulatedmotion that is alreadybeing usedfor generatingani-
matedvideo to alsogenerateaudio. This taskis accomplishedby
analyzingthe surfacemotionsof objectsthat are animatedusing
a deformablebodysimulator, andisolatingvibrationalcomponents
thatcorrespondto audiblefrequencies.Thesystemthendetermines
how thesesurfacemotionswill generateacousticpressurewavesin
thesurroundingmediumandmodelsthepropagationof thosewaves
to the listener. For example,a �nite elementsimulationof a bowl
droppingontothe�oor wasusedto computeboththeimageshown
in Figure1 andthecorrespondingaudio.

Assumingthatthecomputationalcostof physicallybasedanima-
tion is alreadyjusti�ed for theproductionof visuals,theadditional
costof computingtheaudiowith our techniqueis negligible. The
techniquedoesnotmake useof specializedheuristics,assumptions
abouttheshapeof theobjects,or pre-recordedsounds.Theaudiois
generatedautomaticallyasthesimulationrunsanddoesnot require
any userinteraction. Although we feel that the resultsgenerated
with this techniquearesuitablefor directusein many applications,
nothingprecludessubsequentmodi�cation by anotherprocessor a
Foley artistin situationswheresomeparticulareffect is desired.

Theremainingsectionsof this paperprovide a detaileddescrip-
tion of the soundgenerationtechniquewe have developed,a re-
view of relatedprior work, severalexamplesof theresultswe have
obtained,anda discussionof potentialareasfor futurework. Pre-
sentingaudio in a printedmediumposesobvious dif�culties. We
includeplots that illustrate the salientfeaturesof our results,and
the proceedingsvideo tapeandDVD includeanimationswith the
correspondingaudio.

2 Backgr ound

Prior work in the graphicscommunityon soundgenerationand
propagationhas focussedon ef�ciently producingsynchronized
soundtracksfor animations[18, 30], andon correctlymodelingre-
�ections and transmissionswithin the sonic environment[14, 15,
21]. In their work on modeling tearing cloth, Terzopoulosand
Fleischergeneratedsoundtracksby playing a pre-recordedsound
whenever a connectionin a spring meshfailed[31]. The DIVA
project endeavored to createvirtual musicalperformancesin vir-
tualspacesusingphysicallyderivedmodelsof musicalinstruments
andacousticray-tracingfor spatializationof thesoundsources[27].
Funkhouserandhis colleaguesusedbeamtracingalgorithmsand
priority rules to ef�ciently computethe direct andre�ected paths
from soundsourcesto receivers[15]. VandenDoelandPai mapped
analytically computedvibrational modesonto object surfacesal-
lowing interactive soundgenerationfor simpleshapes[34]. Rich-
mondandPai experimentallyderivedmodalvibrationresponsesus-
ing roboticmeasurementsystems,for interactivere-synthesisusing
modal �lters [26]. More recentwork by van denDoel, Kry, and
Pai usestheoutputof a rigid bodysimulationto drive re-synthesis
from the recordeddataobtainedwith their robotic measurement
system[33].

Pastwork outsideof thegraphicscommunityon simulatingthe
acousticsof solidsfor thepurposeof generatingsoundhascentered
largely on thestudyof musicalsystems,suchasstrings,rigid bars,
membranes,pianosoundboards,andviolin andguitarbodies.The
techniquesusedinclude�nite elementand�nite differencemeth-
ods,lowerdimensionalsimpli�cations,andmodal/sinusoidalmod-
elsof theeigenmodesof sound-producingsystems.

Numericalsimulationsof barsandmembraneshave usedeither
�nite difference[3, 8, 10] or �nite elementmethods[4, 5, 24]. Fi-
nite differencingapproacheshave alsobeenusedto modelthebe-
havior of strings[6, 7, 25].

Many currentreal-timetechniquesmodel the modesof acous-
tical systems,using resonant�lters [1, 9, 35, 37] or additive si-
nusoidalsynthesis[28]. In essence,modalmodelingachievesef-
�ciency by removing the spatialdynamics,and by replacingthe
actualphysicalsystemby anequivalentmass-springsystemwhich
modelsthesamespectralresponse.However, thedynamics(in par-
ticular the propagationof disturbances)of the original systemare
lost. If themodalshapesareknown, thespatialinformationcanbe
maintainedandspatialinteractionscanremainmeaningful.

If certainassumptionsaremade,somesystemscanbemodeled
in reduceddimensionality. For example,if it is assumedthatadrum
heador the top-plateof a violin is very thin, a two-dimensional
meshcanbeusedto simulatethetransversevibration[36].

In many systemssuch as strings and narrow columnsof air,
vibration can be consideredone-dimensional,with the principal
modesorientedalongonly oneaxis. McIntyre, Schumacherand
Woodhouse's time-domainmodeling techniquehasproven to be
very usefulin simulatingmusicalinstrumentswith a resonantsys-
temwhichiswell approximatedby theone-dimensionalwaveequa-
tion[20]. Suchsystemsexhibit the d'Alembert solution,which is
a decompositionof the one-dimensionalwave equationinto left-
going and a right-going traveling wave components. Smith in-
troducedextensionsto the ideataken from scattering�lter theory
andcoinedthe term“WaveguideFilters” for simulationsbasedon
this one-dimensionalsignalprocessingtechnique[29]. Thewaveg-
uidewave-equationformulationcanbemodi�ed to accountfor fre-
quency dependentpropagationspeeddueto stiffness,asdescribed
in [11]. In this technique,thepropagationspeedsaroundtheeigen-
modesof thesystemaremodeledaccurately, with errorsintroduced
in dampingat frequenciesotherthantheeigenmodes.

Whenconsideringthatthevariousef�cient techniquesdescribed
above areavailable,it shouldbenotedthat theapproximationsare
�a wed from a numberof perspectives. For example,except for
stringsandsimplebars,mostshapesarenot homogeneous.It is
important to observe that for even moderateinhomogeneity, re-
�ections at thepointsof changingimpedancehave to be expected
thatarenot capturedin a straightforward way. Further, the wave-
equationandEuler-Bernoulli equationderivationsalsoassumethat
the differentialequationsgoverningsolid objectsare linear. As a
resultthe above methodscanproducegoodresultsbut only under
very speci�c conditions.The methodthatwe describein thenext
sectionrequiresmore computationthan most of the above tech-
niques,but it is muchmoregeneral.

3 Sound Modeling

When solid objectsmove in a surroundingmedium, they induce
disturbancesin themediumthatpropagateoutward. For most�uid
media,suchasair or water, thesigni�canceof viscouseffectsde-
creasesrapidly with distance,andthepropagatingdisturbancehas
the characteristicsof a pressurewave. If the magnitudeof the
pressurewave is of moderateintensityso thatshockwavesdo not
form andtherelationshipbetweenpressure�uctuation anddensity
changeis approximatelylinear, thenthewavesareacousticwaves
describedby theequation

@2p
@t2

= c2r 2p (1)

wheret is time,p is theacousticpressurede�ned asthedifference
betweenthe currentpressureandthe �uid' s equilibrium pressure,
andc is theacousticwave speed(speedof sound)in the �uid. Fi-
nally, if the waves reacha listenerat a frequency betweenabout
20Hz and20,000Hz, they will beperceivedassound.(SeeChap-
ter � ve of the text by Kinsler et al. [19] for a derivation of Equa-
tion (1).)
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Figure2: A schematicoverview of joint audioandvisualrendering.

(a) (b)

Figure3: Tetrahedralmeshfor an F ] 3 vibraphonebar. In (a),only
the external facesof the tetrahedraare drawn; in (b) the internal
structureis shown. Meshresolutionis approximately1cm.

The remainderof this sectiondescribesour techniquefor ap-
proximatingthesoundsthataregeneratedby themotionsof solid
objects.Thetechniquebuildsonpreviouswork in the�eld of phys-
ically basedanimationthatusesdeformablemodelsto simulatethe
behavior of theobjects.As themotionof thesolid objectsis com-
puted,their surfacesareanalyzedto determinehow themotionwill
induceacousticpressurewavesin thesurroundingmedia.Thesys-
tem computesthe propagationof thosewaves to the listenerand
thenusestheresultsto generatesoundscorrespondingto thesimu-
latedbehavior. (SeeFigure2.)

3.1 Motions of Solid Objects

The �rst stepin our techniquerequirescomputingthe motionsof
theanimatedobjectsthatwill begeneratingsounds.As thesemo-
tionsarecomputed,they will beusedto generateboththeaudioand
visualcomponentsof theanimation.

Our systemmodels the motions of the solid objectsusing a
non-linear�nite elementmethodsimilar to the onedevelopedby
O'Brien andHodgins[22, 23]. This methodmakesuseof tetrahe-
dral elementswith linearbasisfunctionsto computethemovement
anddeformationof three-dimensional,solidobjects.(SeeFigure3.)
Green'snon-linear�nite strainmetricis usedsothatthemethodcan
accuratelyhandlelargemagnitudedeformations.A volume-based
penaltymethodcomputescollision forcesthatallow theobjectsto
interactwith eachotherandwith otherenvironmentalconstraints.
For thesake of brevity, weomit thedetailsof this methodfor mod-
elingdeformableobjectswhich areadequatelydescribedin [22].

We selectedthis particularmethodbecauseit is reasonablyfast,
reasonablyaccurate,easyto implement,andtreatsobjectsassolids
ratherthanshells.However, thesoundgenerationprocessis largely
independentof themethodusedto generatetheobjectmotion. So
longasit ful�lls a few basiccriteria,anothermethodfor simulating
deformableobjectscouldbeselectedinstead.Thesecriteriaare

• Temporal Resolution— Vibrations at frequenciesas high
asabout20,000Hz generateaudiblesounds. If the simula-
tion usesan integration time-steplarger thanapproximately
10� 5 s, thenit will not beableto adequatelymodelhigh fre-
quency vibrations.

• DynamicDeformationModeling— Most of thesoundsthat
anobjectgeneratesasit movesarisefrom vibrationsdrivenby
elasticdeformation.Thesevibrationswill notbepresentwith

techniquesthat do not model deformation(e.g. rigid body
simulators). Similarly, thesevibrationswill not be present
with inertia-lesstechniques.

• SurfaceRepresentation— Becausethe surfacesof the ob-
jectsarewherevibrationstransitionfrom the objectsto the
surroundingmedium,the simulationtechniquemustcontain
someexplicit representationof theobjectsurfaces.

• PhysicalRealism— Simulationtechniquesusedfor phys-
ically basedanimationmustproducemotion that is visually
acceptablefor the intendedapplication. Generatingsounds
from the motion will reveal additional aspectsof the mo-
tion thatmaynot have beenvisibly apparent,soa simulation
methodusedto generateaudiomustcomputemotion that is
accurateenoughto soundacceptablein addition to looking
acceptable.

Thetetrahedral�nite elementmethodwe areusingmeetsall of
thesecriteria, but so do many other methodsthat are commonly
usedfor physically basedanimation. For example, a massand
springsystemwould besuitableprovided theexterior facesof the
systemwerede�ned.

3.2 Surface Vibrations

Oncewe have a methodfor computingthe motion of the objects,
thenext stepin theprocessrequiresanalyzingthesurface'smotions
to determinehow it will affect thepressurein thesurrounding�uid.
Let 
 bethesurfaceof themoving object(s),andlet ds bea differ-
ential surfaceelementin 
 with unit normal ^� andvelocity � . If
weneglectviscousshearforcesthentheacousticpressure,p, of the
�uid adjacentto ds is givenby

p = z � � ^� : (2)

wherez = �c is the�uid' sspeci�c acousticimpedance.From[19],
the density of air at 20°C under one atmosphereof pressureis
� = 1:21kg=m3 , and the acousticwave speedis c = 343m=s,
giving z = 415Pa � s=m.

Representingthe pressure�eld over 
 requiressomeform of
discretization.Wewill assumethata triangulatedapproximationof

 exists (denoted
 � ) andwe will approximatethe pressure�eld
asbeingconstantover eachof thetrianglesin 
 � .

Eachtriangle is de�ned by threenodes. The position, � , and
velocity, _� , of eachnodearecomputedby a physicalsimulation
methodasdiscussedin Section3.1. We will referto thenodesof a
giventriangleby indexing with squarebrackets.For example, � [2]
is the positionin world coordinatesof the triangle's secondnode.
Thesurfaceareaof eachtriangleis givenby

a = jj ( � [2] � � [1] ) � ( � [3] � � [1] )jj=2; (3)

andits unit normalby

^� =
( � [2] � � [1] ) � ( � [3] � � [1] )

2a
: (4)

Theaveragepressureover thetriangleis computedby substituting
the triangle's normalandaveragevelocity, �� , into Equation(2) so
that

�p = z�� � ^� = z

 
1
3

3X

i =1

_� [ i ]

!

� ^� : (5)

The variable �p tells us how the pressureover a given triangle
�uctuates,but weareonly interestedin �uctuationsthatcorrespond
to frequenciesin the audiblerange. Frequenciesabove this range
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Figure4: One-dimensionalaccumulationbuffer usedto account
for travel time delay.

will needto beremovedor they will causealiasingartifacts.1 Lower
frequencieswill not causealiasingproblems,but they will interact
with later computationsto createotherdif�culties. For example,
anobjectmoving at a constantratewill generatea large,constant
pressurein front of it. Thecorrespondingconstanttermwill show
up asan inconvenientoffset in the �nal audiosamples.More im-
portantly, it mayinteractwith lattervisibility computationsto create
unpleasantartifacts.To removeundesirablefrequency components,
we make useof two �lters thatareappliedto thepressurevariable
at eachtrianglein 
 � .

First,a low-pass�lter is appliedto �p to removehighfrequencies.
The low-pass�lter is implementedusinga normalizedkernel,K ,
built from a windowedsincfunctiongivenby

K i = sinc(i � t ) � win(i=w) ; i 2 [� w; : : : ; w] (6)

sinc(t) =
sin(2� f max t )

� t
(7)

win( u) =

�
1=2 + cos(� u)=2 : juj � 1

0 : juj > 1 ; (8)

wheref max is thehighestfrequency to beretained,� t is thesim-
ulation time-step,andw is the kernel's half-width. The low-pass
�ltered pressure,g, is obtainedby convolving �p with K andsub-
samplingtheresultdown to audiorate.

The second�lter is a DC-blocking �lter that will remove any
constantcomponentandgreatlyattenuatelow-frequency ones. It
worksby differentiatinga signalandthenre-integratingthesignal
usinga “lossy integrator.” The�nal �ltered pressure,~p, afterappli-
cationof theDC-blocking�lter is givenby

~pi = (1 � � ) ~pi � 1 + (gi � gi � 1); (9)

where� is a lossconstantbetweenzeroandone,g is thelow-pass
�ltered pressure,andthesubscriptsindex time at audiorate.

For the examplespresentedin this paper, f max was22,050Hz
andwe sub-sampledto an audiorateof 44,100Hz. The low-pass
�lter kernel's half-width was threetimes the wavelengthof f max

(w = d3=(f max � t )e). The valueof � wasselectedby trial and
errorwith � = 0:1 yieldinggoodresults.

3.3 Wave Radiation and Propagation

Oncewe know the pressuredistribution over the surface of the
objectswe mustcomputehow the resultingwave propagatesout-
ward towardsthe listener. The mostdirect way of accomplishing
this task would involve modelingthe region surroundingthe ob-
jectswith Equation(1), andusingthepressure�eld over 
 aspre-
scribedboundaryconditions. This approachwould leadto a cou-
pled solid/�uid simulation. Unfortunately, the additionalcost of
the �uid simulationwould not be trivial. Instead,we canmake a
few simplifying assumptionsandusea muchmoreef�cient solu-
tion method.

1Weassumethatthesimulationtime-stepis smallerthantheaudiosam-
pling period. This is the casefor our exampleswhich usedan integration
time-stepbetween10� 6 s and10� 7 s.
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Figure 5: Spectrumgeneratedby plucking the free end of a
clampedbar. Predictedvaluesaretakenfrom [19].

Huygen's principle statesthat the behavior of a wavefront may
bemodeledby treatingevery point on the wavefront astheorigin
of a sphericalwave,which is equivalentto statingthatthebehavior
of a complex wavefrontcanbeseparatedinto thebehavior of a set
of simplerones[17]. Usingthis principle,we canapproximatethe
result of propagatinga single pressurewave outward from 
 by
summingthe resultsof a many simpler waves, eachpropagating
from oneof thetrianglesin 
 � .

If we assumethat the environmentis anechoic(no re�ections)
andwe ignoretheeffectof diffractionaroundobstacles,thena rea-
sonableapproximationfor the effect on a distant receiver of the
pressurewave generatedby a trianglein 
 � is givenby

s =
~pa � �x ! r

jj �� � � jj
cos(� ); (10)

where� is thelocationof thereceiver, �� is thecenterof thetriangle,
� is theanglebetweenthetriangle's surfacenormalandthevector

� � �� , and� �x ! r is a visibility termthat is oneif anunobstructed
ray canbe tracedfrom �� to � andzerootherwise.2 Thecos(� ) is
a roughapproximationto the�rst lobeof thefrequency-dependent
beamfunctionfor a �at plate[19].

Equation(10) is nearly identical to similar equationsthat are
usedin imagerenderingwith local lighting models,and the de-
cision to ignorere�ected anddiffractedsoundwavesis equivalent
to ignoringsecondaryillumination. A minor differenceis that the

2The centerof a triangleis computedby averagingthe locationsof its
verticesandlow-pass�ltering the resultusingthe sinc kernel from Equa-
tion (6). Likewise, thenormalis obtainedfrom low-pass�ltered vertex lo-
cations.The�ltering is necessarybecausethepropagationcomputationsare
performedat audiorate,not simulationrate,andincorrectlysub-sampling
thetrianglecentersor normalswill resultin audiblealiasingartifacts.
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falloff term is inverselyproportionalto distance,not to distance
squared.Thesoundintensity, measuredin energy perunit timeand
area,doesfalloff with distancesquared,but eardrumsandmicro-
phonesreactto pressurewhich is proportionalto thesquare-rootof
intensity[32].

A moresigni�cant differencearisesbecausesoundtravels sev-
eral ordersof magnitudeslower thanlight, andwe cannotassume
thatsoundpropagationis instantaneous.In �uids suchasair, sound
doestravel rapidly enough(c = 343m=s) thatwe maynotdirectly
notice the delayexceptover large distances,but we do noticein-
directeffectsevenat smalldistances.For example,very smallde-
laysareresponsiblefor bothDopplershiftingandthegenerationof
interferencepatterns.Additionally, if we wish to computestereo
soundby usingmultiple receiver locations,thendelaydifferences
betweenahumanlistener'searsassmallas20� sprovideimportant
cuesfor localizingsounds[2].

To account for propagationdelay we make use of a one-
dimensionalaccumulationbuffer that storesaudio samples. All
entriesin the buffer are initially set to zero. When we compute
s for eachof thetrianglesin 
 � ata giventime,we alsocomputea
correspondingtime delay

d =
jj �� � � jj

c
: (11)

The s valuesare thenaddedto the entriesof the buffer that cor-
respondto the currentsimulationtime plus the appropriatedelay.
(SeeFigure4.)

In general,d will notbeamultipleof theaudiosamplingrate.If
wewereto roundto thenearestentryin theaccumulationbuffer, the
resultingaudiowouldcontainartifactsakinto the“jaggies” thatoc-
curwhenscan-convertinglines.Theseartifactswill manifestthem-
selvesin theform of anunpleasantbuzzingsoundasif a saw-tooth
wave hadbeenaddedto theresult. To avoid this problem,we add
the s valuesinto the buffer by convolving the contribution with a
narrow (two sampleswide)Gaussianand“splatting” theresultinto
theaccumulationbuffer.

As thesimulationadvancesforwardin time,valuesarereadfrom
theentryin theaccumulationbuffer thatcorrespondsto thecurrent
time. This value is treatedasan audiosamplethat is sentto the
outputsink. If stereosoundis desiredwe computethispropagation
steptwice,oncefor eachear.

4 Results

Wehave implementedthedescribedtechniquefor generatingaudio
andtestedthesystemonseveralexamples.For all of theexamples,
two listenerlocationswereusedto producestereoaudio. The lo-
cationsarecenteredaroundthevirtual viewpoint andseparatedby
20cm alonga horizontalaxis that is perpendicularto theviewing
direction.Thesoundspectrashown in thefollowing �gures follow
the conventionof plotting frequency amplitudeusingdecibels,so
thattheverticalaxesarescaledlogarithmically.

Figure 1 shows an imagetaken from an animationof a bowl
falling ontoahardsurfaceandaspectrogramof theresultingaudio.
In this example,only the surfaceof the bowl is usedto generate
the audio,andthe �oor is modeledasrigid constraint.The spec-
trogramrevealsthe bowl' s vibrationalmodesasdarker horizontal
lines. Variationsin thedegreeto which eachof themodesareex-
cited occurbecausedifferentpartsof the bowl hit the surfaceon
eachbounce.

The bowl' s shapeis arbitraryandthereis no known analytical
solutionfor its vibrationalmodes.While beingableto modelar-
bitrary shapesis a strengthof theproposedmethod,we would like
to verify its accuracy by comparingits resultsto known solutions.
Figure5 shows the resultscomputedfor a rectangularbar that is

(a) (b)

Figure 6: A squareplate being struck (a) on centerand (b) off
center.
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Figure7: Spectrumgeneratedby striking the squareplateshown
in Figure6 in thecenter(top)andoff from center(right). Predicted
valuesaretakenfrom [12].

clampedat oneendandexcited by applyinga vertical impulseto
the other. The accompanying plot shows the spectrumof the re-
sulting soundwith vertical lines indicating the modefrequencies
predictedby a well known analyticalsolution[19]. Although the
resultscorrespondreasonablywell, the simulatedresultsare no-
ticeably �atter than the theoreticalpredictions. One possibleex-
planationfor the differenceis that theanalyticalsolutionassumes
thebarto beperfectlyelastic,while our simulatedbarexperiences
internaldamping.

Figure 6 shows two trials from a simulationof a squareplate
(with �nite thickness)that is held �x ed alongits borderwhile be-
ing struckby a weight. In the �rst trial the weight hits the plate
on-center, while in thesecondtrial theweightlandsoff-centerhor-
izontally by 25% of theplate's width andvertically by 17%. The
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Real Bar Simulation
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Figure8: Thetop imageplotsacomparisonbetweenthespectraof
a realvibraphonebar(Measured), andsimulatedresultsfor a low-
resolution(Simulated1) andhigh-resolutionmesh(Simulated2).
The vertical lines locatedat 1, 4, and 10 show the tuning ratios
reportedin [12].

frequenciespredictedby the analyticalsolution given by Flecher
and Rossing[12] are overlaid on the spectraof the two resulting
sounds. As with a real plate, the on-centerstrike doesnot sig-
ni�cantly excite vibrational modesthat have nodeslines passing
throughthecenterof theplate(e.g. themodesindicatedby thesec-
ondandthird dashed,red lines). Theoff-centerstrike doesexcite
thesemodesand a distinct differencecan be heardin the result-
ing audio.Thesimulation's lower modesmatchthepredictedones
quitewell, but for thehighermodesthecorrelationbecomesques-
tionable. Poorresolutionof thehighermodesis to beexpectedas
they have a lower signal-to-noiseratioandaremoreeasilyaffected
by discretizationandothererrorsources.

Thebarsin a vibraphoneareundercutsothatthe�rst threepar-
tials aretunedaccordingto a 1:4:10 ratio. While this modi�ca-
tion makestheinstrumentsoundpleasant,thechangein transverse
impedancebetweenthe thin andthick portionsof the bar prevent
ananalyticalsolution.We rantwo simulationsof a 36cm long bar
with meshresolutionsof 1cm and2 cm, andcomparedthemto a
recordingof a realbar beingstruck. (The 1cm meshis shown in
Figure3.) To facilitate the comparison,the simulatedaudiowas
warpedlinearly in frequency to align the�rst partialsto thatof the
realbarat187Hz ( F ] 3), which is equivalentto adjustingthesimu-
latedbar'sdensitysothatis matchestherealbar. Theresultsof this
comparisonareshown in Figure8. Althoughboththesimulatedand
realbarsdiffer slightly from theidealtuning,they arequitesimilar
to eachother. All threesoundsalsocontaina low frequency com-
ponentbelow thebar's �rst modethat is createdby the interaction
with therealor simulatedsupports.

The resultof striking a pendulumwith a fastmoving weight is
shown in Figure9. Becauseof Dopplereffects,thependulum's pe-
riodic swingingmotionshouldmodulateboththeamplitudeandthe
frequency of the received sound. Becauseour techniqueaccounts
for both distanceattenuationand travel delay, it can model these
phenomena.Theresultingmodulationis clearlyvisible in thespec-
trogram(particularlyin the line near500Hz) andcanbeheardin
thecorrespondingaudio.

Becausethis soundgenerationtechniquedoesnot make addi-
tional assumptionsabouthow wavestravel in the solid objects,it
canbeusedwith non-linearsimulationmethodsto generatesounds
for objectswhoseinternalvibrationsarenot modeledby thelinear
wave equation. The �nite elementmethodwe areusingemploys
a non-linearstrain metric that is suitablefor modeling large de-
formations.Figure10 shows framesfrom two animationof a ball
droppingontoa sheet.In the�rst one,thesheetis nearlyrigid and
theball rolls off. In thesecondanimation,thesheetis highly com-
pliant andit undergoeslarge deformationsas it interactswith the
ball. Anotherexampledemonstratinglargedeformationsis shown
in Figure11 wherea slightly bowed sheetis beingbentbackand
forth to createcrinkling sound.Animationscontainingtheaudiofor
these,andother, exampleshave beenincludedon theproceedings
videotapeandDVD. Simulationstimesarelistedin Table1.

5 Conc lusions and Future Work

In this paper, we have describeda generaltechniquefor computing
physicallyrealisticsoundsthattakesadvantageof existing simula-
tion methodsalreadyusedfor physicallybasedanimation.Wehave
alsopresentedaseriesof examplesthatdemonstratetheresultsthat
canbeachievedwhenour techniqueis usedwith a particular, �nite
elementbasedsimulationmethod.

One areafor future work is to combinethis soundgeneration
techniquewith other simulation methods. As discussedin Sec-
tion 3.1, it should be possibleto generateaudio from most de-
formablebody simulationmethodssuchas massandspring sys-
temsor dynamicclothsimulators.It mayalsobepossibleto gener-
ateaudiofrom some�uid simulationmethods,suchasthemethod
developedby FosterandMetaxasfor simulatingwater[13].

Of the criteria we listed in Section3.1, we believe that the re-
quired temporalresolutionis most likely to posedif�culties. If
thesimulationintegratorusestime-stepsthatarelarger thanabout
10� 5 s, thehigherfrequenciesof theaudiblespectrumwill not be
sampledadequatelyso that,at best,theresultingaudiowill sound
dull andsoggy. Unfortunately, small time-stepsresultin slow sim-
ulations,and as a result a signi�cant amountof researchhasfo-
cusedon �nding waysto allow numericalintegratorsto take larger
stepswhile remainingstable. In general,the larger time-stepsare
achieved by removing the high-frequency componentsfrom the
motionsbeing computed. While removing thesehigh-frequency
componentswill at somepoint createvisually objectionablearti-
facts,it is likely thatsoundqualitywill beadverselyaffected�rst.

Rigid bodysimulationsarealsoexcludedby ourcriteriabecause
they do not model the deformationsthat drive mostof the vibra-
tions that producesound. This limitation is particularly unfortu-
natebecauserigid bodysimulationsarewidely used,particularlyin
interactive applications.Becausethey areso commonlyused,de-
velopinggeneralmethodsfor computingsoundsfor rigid bodyand
largetime-stepsimulationmethodsis an importantareafor future
work.

Although our soundpropagationmodel is relatively cheapto
compute,it is also quite limited. Re�ected and diffractedsound
transportoftenplay a signi�cant role in determiningwhatwe hear
in anenvironment.To draw ananalogywith imagerendering,our
currentmethodis roughlyequivalentalocal illuminationmodeland
addingre�ection anddiffractionwouldbeequivalentto steppingup
to global illumination. In somewaysglobal soundcomputations
would actuallybemorecomplex thanglobal illumination because
onecannotassumethatwavespropagateinstantaneously. Otherre-
searchershaveinvestigatedtechniquesfor modelingacousticre�ec-
tions,for example[14], andcombiningour work with theirswould
probablybeuseful.

Our listenermodel could also be improved. As currently im-
plemented,a listenerreceivespressurewavesequallywell from all
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Figure9: Thespectrogramproducedby a swingingbarafter it is
struckby a weight.

directions.While this behavior is idealfor anomni-directionalmi-
crophone,humanearsandmostrealmicrophonesbehave quitedif-
ferently. Oneobviouseffect is thatthehumanheadactsasablocker
sothathigh frequency soundsfrom thesidetendto beheardbetter
by thatearwhile low frequenciesdiffract aroundtheheadandare
heardby bothears.Other, moresubtleeffects,suchasthepattern
of re�ections off of theouterear, alsocontribute to allowing us to
localizethesoundswehear. Otherresearchershavetakenextensive
measurementsto determinehow soundsareaffectedasthey entera
humanear, andusedthecompileddatatobuild head-relatedtransfer
functions[2, 16]. Filtersderivedfrom thesetransferfunctionshave
beenusedsuccessfullyfor generatingthree-dimensionalspatialized
audio.Wearecurrentlyworkingonaddingthis functionalityto our
existingsystem.

Our primarygoalin this work hasbeento generatea tool that is
usefulfor generatingaudio.However, wehavealsonoticedthatthe
audioproducedby asimulationmakesanexcellentdebuggingtool.
For example,we have observedthatsymptomsof a simulationgo-
ing unstableoftencanbeheardbeforethey becomevisible. Other
commonsimulationerrors,suchasincorrectcollisionresponse,are
also evidencedby distinctively odd sounds. As physicallybased
animationcontinuesto becomesmorecommonlyused,soundgen-
erationcould becomeusefulnot only for its own sake but alsoas
standardtool for working with anddebuggingsimulations.
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Figure11: A slightly bowedsheetbeingbentbackandforth.
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