
TOWARD SYNTHESIZED ENVIRONMENTS: A SURVEY OF ANALYSIS
AND SYNTHESIS METHODS FOR SOUND DESIGNERS AND COMPOSERS

Ananya Misra, Perry R. Cook†

Princeton University
Department of Computer Science (†also Music), Princeton, USA

{amisra, prc}@cs.princeton.edu

ABSTRACT

We present an overview of digital audio analysis and synthe-
sis methods for sound design and composition. The sonic
landscape available to us contains a multitude of sounds,
ranging from artificial to natural, purely musical to purely
“real-world.” To take full advantage of this diversity, it is
helpful to have a comprehensive knowledge of the tools with
which we can create and manipulate different types of sounds.
We offer a summary of existing techniques organized by
their underlying technology and source material, as well as
by the kinds of sounds for which they are known to be effec-
tive. Our survey aims to support the synthesis of rich sound
scenes and environments by facilitating the selection of the
most appropriate tools for each component sound. A full
toolbox means the whole world need not look like a nail!

1. INTRODUCTION

The sonic landscape available to us contains a multitude
of sounds, ranging from artificial to natural, purely musi-
cal to purely “real-world.” Taking full advantage of this di-
versity may require mixing and matching different types of
sounds in the same piece. Environmental audio or sound
scenes, for example, tend to combine many types of fore-
ground and background sound sources: ambient textures,
noisy events, pitched events, speech, music, and more. Of-
ten, different source types are best suited to different para-
metric analysis and synthesis paradigms. Parametric syn-
thesis also offers many advantages over mixing raw digital
recordings, including improved flexibility, control and com-
pression. Sound designers and composers working with rich
sound scenes can therefore benefit from a full knowledge
of a variety of analysis and synthesis techniques. To this
end, we present a survey of existing digital audio synthesis
and analysis methods, including a taxonomy based on which
types of sounds they support best.

Related literature includes surveys and taxonomies of
digital synthesis techniques [76, 84], computer music [64],
sound design for games and film [36], sound and music
computing [96], structured audio representations [93] and

singing voice synthesis [19]. Many of these touch on com-
mon synthesis topics. In [76] (and later [84]), digital synthe-
sis techniques are arranged into four categories: processed
(and sampled) recordings, spectral models, physical models
and abstract algorithms. [93] discusses analysis and synthe-
sis techniques related to parametric sound representations
and describes their domain and range as well as their gen-
erality. In [96], topics are divided into sound, music and
interaction, with a discussion of analysis and synthesis tech-
niques for each. However, none of these surveys approaches
the field from the perspective of creating complex environ-
mental scenes or compositions.

We present a slightly different categorization than [76],
considering the technical background and required source
material for each method, as well as how it might contribute
to a larger sound scene. Of course, no taxonomy is clean
or 1-to-1 from method to class. We first discuss abstract
synthesis algorithms (section 2), followed by techniques for
sound synthesis from “scratch” based on physical or per-
ceptual models (section 3). In our largest section, perhaps
most relevant to environmental audio, we examine methods
to synthesize sound from existing sound, usually involving
analysis as well as synthesis (section 4). Next, we take a
brief glance at standalone analysis methods not necessarily
designed for synthesis (section 5). We also offer a table link-
ing the described methods to the sound types for which they
are known to be effective. Lastly, we present a sound exam-
ple that combines many synthesis algorithms, highlighting
the applicability of multiple techniques to a single coher-
ent piece. We conclude with brief notes to sound design-
ers, developers of interactive applications for entertainment
(games, etc.), and electro-acoustic composers.

2. ABSTRACT SYNTHESIS ALGORITHMS

Early electronic music with analog synthesizers used oscil-
lator units and modular synthesis to produce sounds [76].
In the digital world, oscillators range from basic sine, tri-
angle, square and other simple wave generators, to more
complex and hybrid systems [78, 25]. Because oscillators
in some form play a role in many aspects of synthesis, we

mailto:amisra@cs.princeton.edu
mailto:prc@cs.princeton.edu

may think of them as building blocks of synthesis. We clas-
sify them as abstract because they do not necessarily arise
from one particular “concrete” paradigm. Abstract synthe-
sis algorithms building on oscillators include amplitude and
frequency modulation and waveshaping. Frequency modu-
lation, or the modulation of one oscillator’s frequency (or
phase) by another’s output, was discovered by Chowning to
have interesting musical implications [14, 15]. More gen-
erally, waveshaping refers to the modification of an exist-
ing signal by a non-linear function [93, 33]. Other work on
waveshaping includes [52] and [3].

The study of non-linearity and chaos has led to a range
of abstract sound synthesis algorithms [85, 26, 55]. An
overview of related work and an introduction to the use of
circle maps as rich non-linear oscillators are presented in [33,
34]. The idea of “errant sound synthesis”, through non-
linear oscillators and breakpoint sets, is discussed in [16],
where the goal is described as “not the modelling and re-
production of sounds from perceptual or physical acousti-
cal data but the potential of any algorithm, cast into the au-
dio range.” Auditory display and sonification, or the map-
ping of other data to sound, also enable a form of abstract
sound synthesis [49, 98]. Software tools for sonification in-
clude [8] and [62]. Another abstract approach to sound syn-
thesis is to consider synthesis techniques as structured, ab-
stract entities, facilitating a high-level mathematical under-
standing of synthesis and transformation methods [32, 24].

3. SYNTHESIS FROM SCRATCH

Synthesis from “scratch” refers to the replication of real-
world sounds using physical or perceptual models, without
the raw material of existing audio samples. The model may
represent a sound’s physical source or environment, or the
perceptual characteristics desired. A frequent advantage of
such model-based synthesis is the option of high-level para-
metric control over the synthesized sound. Early examples
of physical modeling include musical sound synthesis by
Hiller and Ruiz [42], and the Karplus-Strong plucked-string
algorithm [46, 45]. The plucked-string algorithm originated
as an abstract variation of wavetable synthesis, but was later
discovered to implement a simplified physical model of a
plucked string. This idea of interesting but computationally
simple physical models led to digital waveguide synthesis,
which can produce a range of musical instrument sounds
with expressive control [74, 75, 77, 78, 39]. Extensions
to waveguide synthesis include two- and three-dimensional
waveguide meshes [91, 92], and banded waveguides to model
stiff systems such as struck bars [35].

Other physical models have been used to reproduce acous-
tic instrument sounds, including reed and bow-string mod-
els [73], speech and singing voice synthesis [17, 19], and
modal synthesis of percussive sounds [18, 20]. The Syn-
thesis ToolKit [23] provides a library for real-time synthesis

of musical instrument sounds using physical models. Many
of these have been ported and expanded upon in other sys-
tems such as PeRColate (for Max/MSP) [87], ChucK [95],
SuperCollider [1], and others. Non-linearity is also impor-
tant for the physical modeling of some musical instrument
sounds [63]. The synthesis of real-world contact and mo-
tion sounds such as impact and friction, especially for ani-
mations and interactive applications, provides another arena
for physical modeling [83, 90, 60, 68].

Perceptual models for synthesis from scratch can include
spectral information, such as formants for speech or singing.
Formant synthesizers generate the desired formants using
second-order resonant filters [19]. While their parameters
can be extracted from recorded speech, such an analysis
stage is not essential to the algorithm. Formant wave func-
tions (FOFs) are time-domain waveform representations of
a formant’s impulse response, usually modeled by a sinu-
soidal oscillator with time-varying amplitude; these are flex-
ibly generated and added to create a voice-like sound [69,
19]. While formant-based synthesis methods produce sound
containing the desired formants, the idea of synthesizing
audio to match any set of target features is generalized in
feature-based synthesis [43]. This method inputs a set of
arbitrary acoustic and perceptual feature values and uses a
parametric optimizer to generate matching audio via arbi-
trarily selected synthesis algorithms. It is currently suited
to generating abstract sound and audio caricatures, but be-
cause the sound produced depends on the features and spe-
cific synthesis techniques used, any inherent limitation of
the method is still to be discovered.

4. SYNTHESIS FROM EXISTING SOUNDS

A third category of synthesis is the creation of sound from
existing sound. As this often involves some form of anal-
ysis of the existing sound, we can also broadly refer to it
as synthesis-by-analysis. In particular, we look at concate-
native techniques, in which existing samples are rearranged
in the time-domain, and additive synthesis, which generally
takes a more spectral approach.

4.1. Concatenative Techniques

A well known concatenative technique is wavetable synthe-
sis [76, 93], the periodic repetition of a set of time-domain
samples, often to create pitched instrument sounds. Wave-
table synthesis may also arguably fit into either of the previ-
ous categories; an abstraction of it resulted in the plucked-
string algorithm [46] (see section 3), while in frequency-
domain wavetable synthesis, a specified harmonic spectrum
is transformed to yield the time-domain samples [76]. How-
ever, the algorithm is concatenative in the general sense of
concatenating existing samples in time. Schwarz [70, 71]
describes concatenative synthesis as synthesis using a large

database of source sounds segmented into units, a target
sound to be synthesized, and a unit selection algorithm that
chooses the units best matching the target according to a set
of unit descriptors. The selected units are transformed as
needed and concatenated in the time-domain, possibly with
a cross-fade. A range of techniques with varying levels of
manual control and automation fall under this umbrella, in-
cluding methods for speech and singing synthesis [19] and
audio mosaicing [51, 70].

Another type of concatenative synthesis is granular syn-
thesis [86], in which sound is created by concatenating usu-
ally short “sound grains”. This can produce a variety of ab-
stract sounds and textures. FOFs (see section 3) can also
be interpreted as granular synthesis, especially when the si-
nusoidal oscillators are replaced by arbitrary samples [93].
Dictionary-based methods with time-localized waveforms
provide an analytical counterpart to granular synthesis, and
allow flexible analysis, re-synthesis and transformation of
general audio signals [82].

Granular and other forms of concatenative synthesis have
also supported the generation of soundscapes and sound tex-
tures of arbitrary length. Hoskinson and Pai [44] applied
a wavelet-based algorithm to split an existing soundscape
into syllable-like segments, which were then selected by
similarity and concatenated to produce an ongoing stream.
Birchfield et al. [9] describe a model for real-time sound-
scape generation using a database of annotated sound files,
dynamically selected and combined to produce a varying
soundscape. Fröjd and Horner [40] concatenate longer seg-
ments of existing audio, with some overlap, to achieve rapid
sound texture synthesis.

4.2. Additive Synthesis

Additive synthesis generally involves spectral analysis, and
addition of the signals synthesized based on this analysis.
Risset [67] is credited with the first such additive synthesis
for music, to analyze and re-synthesize trumpet tones [76].
Other groundwork includes the development of voice coders,
or vocoders, originally for audio transmission and compres-
sion. The channel vocoder [29] passes input audio through
a bank of bandpass filters to compute the energy present in
each frequency band. This information is used to synthe-
size a signal with the corresponding energy in each band,
by summing the weighted outputs of a bank of synthesis
filters [22]. The phase vocoder [27] uses the Fast Fourier
Transform (FFT) to estimate the phase as well as magnitude
of each frequency band (or bin), resulting in more convinc-
ing reconstruction for general sounds [22]. Both types of
vocoders have been used for pitch and time transformations
of the source sound, and for cross-synthesis.

As the phase vocoder uses the information in all the
(usually numerous) frequency bins to reconstruct the sound
via an inverse FFT, it does not achieve significiant compres-

sion. McAulay and Quatieri [56, 66] found that speech sig-
nals can be modeled well using only a few sinusoids instead
of all the frequencies present in the FFT. Spectral model-
ing synthesis [72] adds filtered noise to this mix, recogniz-
ing that the pitched or deterministic elements of a sound are
best modeled by sinusoids, while components such as breath
noise better suit a stochastic model. Other works introduce
transients (brief, bursty events) to achieve a finer decompo-
sition, and also consider transforms besides the FFT [94, 53,
7, 65]. Additive synthesis has typically been used to synthe-
size speech and instrument sounds, although it has also been
appropriated for more general environmental sounds [59].
Tools for additive synthesis include Lemur/Loris [38], the
CLAM library[2], AudioSculpt [10] and SPEAR [48].

4.3. Subtractive Synthesis and Other Techniques

Other ways to analyze existing sound for synthesis include
subtractive synthesis and Linear Predictive Coding (LPC) [4,
54]. Originally designed for speech coding and synthesis,
LPC analyzes a sound into a source-filter model such that a
linear combination of the latest samples in a sequence pre-
dicts the next sample. The prediction error or any other sig-
nal can then be fed into the filter as a source, allowing cross-
synthesis and pitch transformations as well as re-synthesis
of the original sound. LPC has been explored for musical
composition [79, 50] and sound texture synthesis [5, 99].

Sound texture synthesis, or generating an arbitrary quan-
tity of a given source texture, has also attracted other ap-
proaches. Dubnov et al. [28] employ wavelet-tree learning
to synthesize sound textures that are structurally similar to
the original, with stochastic variations. Wavelets have also
been investigated for modeling and transforming stochastic
components of sounds in a parameterized way [58]. Other
statistical approaches include modeling short events in the
source sound, and synthesizing and mixing these according
to an inferred statistical distribution [99]. A survey of sound
texture modeling methods is available in [81].

The modeling and detection of transients for sines+tran-
sients+noise frameworks also involve analysis for the pur-
pose of synthesis. Levine and Smith [53] detect transients
by examining the short-time energy envelopes of both the
original signal and the residual (noise) signal. Verma and
Meng [94] model transients as the time-domain dual of sinu-
soidal tracks; they detect transients by comparing the energy
in short and long segments of a time-domain signal. Tran-
sients can also be found via other onset detection methods,
including both time- and frequency-domain analysis [6, 80].

5. ANALYSIS NOT FOR SYNTHESIS

Many sound analysis methods are not necessarily designed
with an eye toward synthesis, although the information they
yield can lead to synthesis using techniques such as feature-

based (section 3) or concatenative (section 4) synthesis. Wid-
mer et al. [96] distinguish between the analysis of music
versus sound. Topics to explore for sound include percep-
tually informed acoustic models, sound source recognition
and classification, and content-based search and retrieval.
Issues for music concern understanding music at multiple
levels and from multiple disciplines. They also mention the
growing use of semantic data to understand sound and mu-
sic. We focus here on content-based methods; although we
merge sound and music, we chiefly examine techniques that
include a level of signal analysis.

One goal of audio analysis is to represent an audio sig-
nal in structurally or perceptually meaningful ways [93].
The separation of a signal into its component sources facil-
itates such representation. For environmental audio, source
separation falls under computational auditory scene anal-
ysis [11], or estimating the sources in a composite sound
scene to better understand human perception [31, 30] or en-
able structured representation [57]. Perceptually based and
spectral techniques, such as grouping partials by harmonics,
modulation, common onset and proximity, are often used to
identify independent sources [31, 30, 57]. Source separa-
tion also plays a role in the automatic transcription of con-
current musical sounds, in the form of multiple fundamen-
tal frequency estimation [47]. Also related are blind source
separation techniques, in which the sources are estimated
via purely computational rather than perceptually motivated
analysis [12, 37]. Besides source separation, analysis for
representation also includes other aspects of music transcrip-
tion [41] and audio compression.

Another set of analysis methods aims to understand and
use a collection of sounds on a more global level. These
techniques entail extracting and analyzing information from
many sounds and using the results for content-based clas-
sification, search, recommendation, or other actions involv-
ing comparison. Work in this area includes methods to ex-
tract audio features and to analyze them over the training
set and compute distances for the classification or search.
The MARSYAS framework [88] offers tools for performing
many of these steps, and has led to foundational work on au-
tomatic genre classification [89]. Also related is research on
automatic timbre recognition [61]. An overview of content-
based music information retrieval, both at the signal-level
and the collection-level, is presented in [13].

6. DISCUSSION

We have briefly surveyed methods for audio analysis and
synthesis, with a focus on techniques combining both. The
organization of methods into categories based on their un-
derlying technology, source information, and goals implies
a taxonomy according to both the theory and implementa-
tion of these methods. While our taxonomy includes some
concrete aspects such as source material and intended us-

Sound/Goal Methods
Abstract FM, non-linear oscillators, feature-

based synthesis, wavetables, con-
catenative / granular synthesis

Acoustic instruments Wavetables, waveguides / physi-
cal models, concatenative / granular
synthesis, additive synthesis

Contact sounds Physical models
Cross-synthesis LPC, vocoders
Pitch / time transfor-
mations

LPC, vocoders, additive synthesis,
concatenative / granular synthesis

Pitched sounds Additive synthesis, concatenative /
granular synthesis, FM synthesis,
oscillators

Singing voice FM synthesis, formant synthesis,
FOFs, concatenative / granular syn-
thesis, additive synthesis

Speech Formant synthesis, FOFs, con-
catenative / granular synthesis,
vocoders, additive synthesis, LPC

Textures and sound-
scapes

Concatenative / granular synthesis,
LPC, stochastic and wavelet-based
methods

Transients Onset detection, physical models,
concatenative / granular synthesis,
sines+transients+noise models

Table 1. Taxonomy of analysis/synthesis methods by the
types of sounds for which they work well.

age, it also retains a level of abstraction. This is possible
because the theoretical background of a method dictates, to
some extent, the types of sounds for which it is effective.

For a designer or developer wishing to create specific
kinds of sounds, an even more concrete classification of
methods may prove useful. Hence, we present a list of dif-
ferent types of sounds or synthesis goals, and analysis / syn-
thesis methods known to work well for each of them (see
table 1). The first column (sounds / goals) is inferred infor-
mally from the scopes of all the algorithms discussed. This
approach allows us to consider a set of sound types that ac-
tually map well to specific algorithms. It does not, however,
restrict the sounds or methods available to the user. Future
exploration of existing and new techniques is bound to yield
new mappings between methods and sounds. This paper of-
fers a summary of currently known options and indicates
starting points for further investigation.

One perspective on synthesizing environments is that
due to the variety of sources they combine, it is most ef-
fective to separately model each source with the technique
best suited to it. Future work with sound scenes and envi-
ronments is then likely to explore and apply a mix of meth-

J K

A

B

C

D E

F

G

H

I

L

M

Time (seconds)

Fr
eq

ue
nc

y
(H

er
tz

)

Figure 1. A concluding example (see section 7). This sound scene was created using multiple synthesis algorithms: oscillators
(A), FM synthesis (F), parametric synthesis from scratch (B), modal synthesis (G), LPC (C, D, E, H, M), additive synthesis
(I, L), concatenative texture synthesis (J), and feature-based synthesis (K). Audio available at http://soundlab.cs.
princeton.edu/listen/synthesis_example/

ods described here. Another perspective is that a single
flexible technique may satisfactorily model the majority of
sounds. This presents an exciting avenue to explore, though
such a technique may not model each sound in the best
possible way. Several options lie between these two ex-
tremes: present the entire range of techniques to the ma-
chine and let it decide which to use on-the-fly, or select an
all-encompassing technique as the default but let the user
override it with another method if desired, or other options
yet unexplored. Since many of these support the use of
multiple algorithms, we believe our overview is relevant to
sound designers and the wider computer music community.

7. A CONCLUDING EXAMPLE

To conclude, we present an example sound scene created
using multiple synthesis algorithms (see Figure 1). The ex-
ample combines aspects of “real-world” sound design and
more abstract composition. It begins with (A) a beeping
alarm clock (sinusoidal oscillator synthesis, section 2), fol-
lowed by (B) footsteps on a wooden floor (parametric syn-
thesis from scratch, GaitLab [21], section 3). Next come the
sounds of (C) a sliding door opening, (D) a person brushing
his teeth, and (E) running water (all re-synthesized using
time-frequency LPC [5], section 4.3). (F) A doorbell (FM
synthesis, section 2) follows, overlapping with (G) a door

being pounded (modal synthesis excited by exponentially
enveloped noise, section 3). The sound of (H) a door open-
ing (noise-excited LPC, section 4.3) marks the transition to
a less realistic scene. The next section begins with (I) a baby
crying (sinusoidal additive synthesis [72], section 4.2), lead-
ing into a chorus of transformed versions of crying babies
(also using additive synthesis). This chorus is overlaid with
(J) several seconds of playground din (random overlap-add
sound texture synthesis [40], section 4.1) followed by (K)
white noise shaped to match the root-mean-square power of
the preceding din (feature-based synthesis [43], section 3).
(L) Wind-chimes transformed in frequency and time (ad-
ditive synthesis, section 4.2) are also added to the mix, to
create a richer scene. Finally, as this abstract section fades,
the sound of (M) a door closing (noise-excited LPC, sec-
tion 4.3) marks the end of the interlude and the sound scene.

This example illustrates the variety of algorithms that
may contribute to a single fairly simple piece. Several fac-
tors influence the choice of algorithm: the specific sound
to be synthesized (see table 1), the available material and
tools (existing sound files, physical or perceptual models),
the type and range of control desired, and other variables.
Abstract algorithms may allow the most freedom of explo-
ration, in that they examine the potential of any structure, al-
gorithm, or data. However, they can also synthesize realistic
sounds, such as (A) the alarm and (F) the doorbell. Synthe-

http://soundlab.cs.princeton.edu/listen/synthesis_example/
http://soundlab.cs.princeton.edu/listen/synthesis_example/

sis from scratch is especially suitable when there is a model
or the means to create one, and often allows high-level para-
metric control over the synthesized sound. Synthesis-by-
analysis is appropriate when given existing sounds to trans-
form, arbitrarily extend, or otherwise re-use. Finally, pri-
marily analytic techniques can also aid synthesis by provid-
ing meaningful information. Thus, each set of techniques
has a synthesis scope defined by sound type and context.

Available software tools for synthesizing sound include
programming languages (ChucK, SuperCollider, Pure Data,
Max/MSP and more) as well as specialized software that of-
fer great control over a fixed set of algorithms. All these en-
able some form of parametric audio synthesis. One advan-
tage of thinking of audio in this way is the data compres-
sion it achieves. In our example, physical synthesis from
scratch compresses 400:1 (1.1MB of sound files become
2.8kB of synthesis parameters and scripts). Other methods
of synthesis together do not achieve as high compression
(11.7MB become 3.5MB), partly because our additive syn-
thesis stores the parameters in a verbose text format. One
may store the same information in a more space-efficient
way by using other formats [97] and performing intelligent
compression. Further, a significantly longer example sound
may easily be rendered from the same parameter files, sug-
gesting even higher compression potential. Even so, a to-
tal of 12.8MB source files become 3.5MB synthesis files to
synthesize 5.6MB for our entire 65-second sample.

Another advantage of using parametric sound synthesis
algorithms instead of raw sound files is the ability to re-
render over and again with minor tweaks or major transfor-
mations to one or more components. The timbre, distribu-
tion, duration, pitch, and other aspects of each component
can be changed in multiple ways according to the synthesis
algorithm used. Thus, we may choose to have more tooth-
brushing and less washing, or change the walker’s gait and
walking surface. Such variables can also be manipulated
interactively and in real-time from external control inputs,
aiding sound design for entertainment purposes.

A similar argument applies for composers. In the early
days of computer music, compositions most often centered
around one method or technique, but now just as the orches-
tral composer has winds, strings, percussion, etc. available
in their palette, the electro-acoustic composer has a rich va-
riety of techniques, each with strengths, weaknesses, and
characteristics. We hope that our overview provides a work-
ing acquaintance with the full set of tools, as well as pointers
to more information on specific techniques if needed, thus
facilitating the creation of vivid scenes and compositions.

8. REFERENCES

[1] “SuperCollider 3 Plugins,” [Software] http:
//sourceforge.net/projects/sc3-plugins/, retrieved
4 February 2009.

[2] X. Amatriain and P. Arumi, “Developing cross-
platform audio and music applications with the CLAM
framework,” in Proc. ICMC, 2005.

[3] D. Arfib, “Digital synthesis of complex spectra by
means of multiplication of non-linear distorted sine
waves,” J. Audio Eng. Soc., vol. 27, no. 10, pp. 757–
779, 1979.

[4] B. S. Atal, “Speech analysis and synthesis by linear
prediction of the speech wave,” J. Acoust. Soc. Am.,
vol. 47, no. 65(A), 1970.

[5] M. Athineos and D. P. W. Ellis, “Sound texture mod-
eling with linear prediction in both time and frequency
domains,” in Proc. IEEE ICASSP, vol. 5, 2003, pp.
648–651.

[6] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury,
M. Davies, and M. B. Sandler, “A tutorial on onset de-
tection in music signals,” IEEE T. Speech Audio Proc.,
vol. 13, no. 5, 2005.

[7] J. R. Beltrán and F. Beltrán, “Additive synthesis based
on the continuous wavelet transform: A sinusoidal
plus transient model,” in Proc. DAFx, 2003.

[8] O. Ben-Tal, J. Berger, B. Cook, M. Daniels, G. P. Scav-
one, and P. R. Cook, “SonART: The Sonification Ap-
plication Research Toolbox,” in Proc. Int. Conf. Audit.
Disp., 2002.

[9] D. Birchfield, N. Mattar, and H. Sundaram, “Design of
a generative model for soundscape creation,” in Proc.
ICMC, 2005.

[10] N. Bogaards, A. Robel, and X. Rodet, “Sound analysis
and processing with AudioSculpt 2,” in Proc. ICMC,
2004.

[11] G. J. Brown and M. Cooke, “Computational auditory
scene analysis,” Comput. Speech Lang., vol. 8, no. 4,
pp. 297–336, 1994.

[12] J.-F. Cardoso, “Blind signal separation: Statistical
principles,” Proc. IEEE, vol. 86, no. 10, pp. 2009–
2025, 1998.

[13] M. A. Casey, R. Veltcamp, M. Goto, M. Leman,
C. Rhodes, and M. Slaney, “Content-based music in-
formation retrieval: Current directions and future chal-
lenges,” Proc. IEEE, vol. 96, no. 4, pp. 668–696, 2008.

[14] J. Chowning, “The synthesis of complex audio spec-
tra by means of frequency modulation,” J. Audio Eng.
Soc., vol. 21, no. 7, pp. 526–534, 1973.

[15] ——, “Frequency modulation synthesis of the singing
voice,” in Current Directions in Computer Music Re-
search, M. Mathews and J. Pierce, Eds. Cambridge,
MA: The MIT Press, 1989, pp. 57–64.

[16] N. Collins, “Errant sound synthesis,” in Proc. ICMC,
2008.

[17] P. R. Cook, “SPASM: A real-time vocal tract physi-
cal model editor/controller and Singer: the companion
software synthesis system,” Comput. Music J., vol. 20,
no. 3, pp. 38–46, 1992.

[18] ——, “Physically informed sonic modeling (PhISM):
Percussive synthesis,” in Proc. ICMC, 1996.

[19] ——, “Singing voice synthesis: History, current work,
and future directions,” Comput. Music J., vol. 20,
no. 3, pp. 38–46, 1996.

http://sourceforge.net/projects/sc3-plugins/
http://sourceforge.net/projects/sc3-plugins/

[20] ——, “Physically informed sonic modeling (PhISM):
Synthesis of percussive sounds,” Comput. Music J.,
vol. 21, no. 3, pp. 38–49, 1997.

[21] ——, “Modeling BILL’S GAIT: Analysis and para-
metric synthesis of walking sounds,” in Proc. Audio
Eng. Soc. Conf. Virt. Synthet. Ent. Audio, 2002.

[22] ——, Real Sound Synthesis for Interactive Applica-
tions. Wellesley, MA: AK Peters, 2002.

[23] P. R. Cook and G. P. Scavone, “The Synthesis ToolKit
(STK),” in Proc. ICMC, 1999.

[24] R. Dannenberg, “Abstract time warping of compound
events and signals,” Comput. Music J., vol. 21, no. 3,
pp. 61–70, 1997.

[25] J. Dattoro, “Effect design: Part 3 oscillators: Sinu-
soidal and pseudonoise,” J. Audio Eng. Soc., vol. 50,
no. 3, pp. 115–146, 2002.

[26] A. DiScipio, “Composition by exploration of non-
linear dynamic systems,” in Proc. ICMC, no. 324-327,
1990.

[27] M. B. Dolson, “The phase vocoder: A tutorial,” Com-
put. Music J., vol. 10, no. 4, pp. 14–27, 1986.

[28] S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski,
and M. Werman, “Synthesizing sound textures through
wavelet tree learning,” IEEE Comput. Graph. App.,
vol. 22, no. 4, 2002.

[29] H. Dudley, “The vocoder,” Bell Lab. Records, 1939.
[30] D. P. W. Ellis, “A computer implementation of psy-

choacoustic grouping rules,” in Proc. Int. Conf. Pattern
Recog., 1994.

[31] D. P. W. Ellis and B. L. Vercoe, “A perceptual repre-
sentation of sound for auditory signal separation,” in
Proc. 123rd meeting Acoust. Soc. Am., 1992.

[32] G. Essl, “Mathematical structure and sound synthesis,”
in Proc. Sound Music Computing Conf., 2005.

[33] ——, “Circle maps as simple oscillators for complex
behavior: I. Basics,” in Proc. ICMC, 2006.

[34] ——, “Circle maps as simple oscillators for complex
behaviors: II. Experiments,” in Proc. DAFx, 2006.

[35] G. Essl, S. Serafin, P. R. Cook, and J. O. Smith III,
“Theory of banded waveguides,” Comput. Music J.,
vol. 28, no. 1, pp. 37–50, 2004.

[36] A. Farnell, Designing Sound. Applied Scientific
Press, 2009, retrieved 7 February 2009 from [Online]
http://aspress.co.uk/ds/bookInfo.html.

[37] C. Fevotte and S. J. Godsill, “A Bayesian approach
for blind separation of sparse sources,” IEEE T. Au-
dio Speech Lang. Proc., vol. 14, no. 6, pp. 2174–2188,
2006.

[38] K. Fitz and L. Haken, “Sinusoidal modeling and ma-
nipulation using Lemur,” Comput. Music J., vol. 20,
no. 4, 1996.

[39] F. Fontana and D. Rocchesso, “Physical modeling
of membranes for percussion instruments,” Acustica,
vol. 84, no. 3, pp. 529–542, 1998.

[40] M. Fröjd and A. Horner, “Fast sound texture synthesis
using overlap-add,” in Proc. ICMC, 2007.

[41] S. W. Hainsworth, “Techniques for the automated
analysis of musical audio,” Ph.D. dissertation, Univer-

sity of Cambridge, UK, 2003.
[42] L. Hiller and P. Ruiz, “Synthesizing musical sounds

by solving the wave equation for vibrating objects,” J.
Audio Eng. Soc., vol. 19, pp. 462–472, 1971.

[43] M. Hoffman and P. R. Cook, “Feature-based synthe-
sis: Mapping from acoustic and perceptual features to
synthesis parameters,” in Proc. ICMC, 2006.

[44] R. Hoskinson and D. K. Pai, “Manipulation and resyn-
thesis with natural grains,” in Proc. ICMC, 2001.

[45] D. Jaffe and J. O. Smith III, “Extensions of the
Karplus-Strong plucked-string algorithm,” Comput.
Music J., vol. 7, no. 2, pp. 56–69, 1983.

[46] K. Karplus and A. Strong, “Digital synthesis of
plucked-string and drum timbres,” Comput. Music J.,
vol. 7, no. 2, pp. 43–55, 1983.

[47] A. Klapuri, “Signal processing methods for the auto-
matic transcription of music,” Ph.D. dissertation, Tam-
pere University of Technology, Finnland, 2004.

[48] M. Klingbeil, “Software for spectral analysis, editing,
and synthesis,” in Proc. ICMC, 2005.

[49] G. Kramer, Ed., Auditory Display: Sonification, Aud-
ification, and Auditory Interfaces, ser. Santa Fe Insti-
tute Studies in the Sciences of Complexity Proc. Vol.
XVIII. Reading, MA: Addison-Wesley, 1994.

[50] P. Lansky, “Compositional applications of linear pre-
dictive coding,” in Current Directions in Computer
Music Research, M. Mathews and J. Pierce, Eds.
Cambridge, MA: MIT Press, 1989, pp. 5–8.

[51] A. Lazier and P. R. Cook, “MOSIEVIUS: Feature-
driven interactive audio mosaicing,” in Proc. DAFx,
2003.

[52] M. LeBrun, “Digital waveshaping synthesis,” J. Audio
Eng. Soc., vol. 27, no. 4, pp. 250–266, 1979.

[53] S. N. Levine and J. O. Smith III, “A
sines+transients+noise audio representation for
data compression and time/pitch scale modifications,”
in Audio Eng. Soc. Conv., 1998.

[54] J. Makhoul, “Linear prediction: A tutorial review,” in
Proc. IEEE, vol. 63, 1975, pp. 561–580.

[55] J. A. Maurer, “The influence of chaos on
computer-generated music,” [Online] http:
//ccrma-www.stanford.edu/∼blackrse/chaos.html,
1999, retrieved 27 January 2009.

[56] R. McAulay and T. Quatieri, “Speech analy-
sis/synthesis based on a sinusoidal representation,”
IEEE T. Acoust. Speech Sig. Proc., vol. 34, no. 4, pp.
744–754, 1986.

[57] K. Melih and R. Gonzalez, “Source segmentation for
structured audio,” in IEEE Int. Conf. Multim. Expo (II),
2000, pp. 811–814.

[58] N. E. Miner and T. P. Caudell, “A wavelet synthe-
sis technique for creating realistic virtual environment
sounds,” Presence, vol. 11, no. 5, pp. 493–507, 2002.

[59] A. Misra, G. Wang, and P. R. Cook, “Musical
tapestries: Re-composing natural sounds,” J. New Mu-
sic Res., vol. 36, no. 4, 2007.

[60] J. F. O’Brien, , P. R. Cook, and G. Essl, “Synthesizing
sounds from physically based motion,” in Proc. ACM
SIGGRAPH, 2001, pp. 529–536.

http://aspress.co.uk/ds/bookInfo.html
http://ccrma-www.stanford.edu/~blackrse/chaos.html
http://ccrma-www.stanford.edu/~blackrse/chaos.html

[61] T. H. Park, “Towards automatic musical instrument
timbre recognition,” Ph.D. dissertation, Princeton Uni-
versity, NJ, 2004.

[62] S. Pauletto and A. Hunt, “A toolkit for interactive soni-
fication,” in Proc. Int. Conf. Audit. Disp., 2004.

[63] J. R. Pierce and S. A. Van Duyne, “A passive nonlin-
ear digital filter design which facilitates physics-based
sound synthesis of highly nonlinear musical instru-
ments,” J. Acoust. Soc. Am., vol. 101, no. 2, pp. 1120–
1126, 1997.

[64] S. T. Pope, “A taxonomy of computer music,” Con-
temp. Music Rev., vol. 13, no. 2, pp. 137–145, 1996.

[65] Y. Qi, T. P. Minka, and R. W. Picard, “Bayesian spec-
trum estimation of unevenly sampled nonstationary
data,” in Proc. IEEE ICASSP, 2002.

[66] T. Quatieri and R. McAulay, “Speech transformations
based on a sinusoidal representation,” IEEE T. Acoust.
Speech Sig. Proc., vol. 34, no. 6, pp. 1449–1464, 1986.

[67] J.-C. Risset, “Computer music experiments, 1964–...”
Comput. Music J., vol. 9, pp. 11–18, 1985.

[68] D. Rocchesso, “Physically-based sounding objects, as
we develop them today,” J. New Music Res., vol. 33,
no. 3, pp. 305–313, 2004.

[69] X. Rodet, “Time-domain formant-wave-function syn-
thesis,” Comput. Music J., vol. 8, no. 3, pp. 9–14, 1984.

[70] D. Schwarz, “Concatenative sound synthesis: The
early years,” J. New Music Res., vol. 35, no. 1, pp.
3–22, 2006.

[71] ——, “Corpus-based concatenative synthesis,” IEEE
Sig. Proc. Mag., pp. 92–104, 2007.

[72] X. Serra, “A system for sound analysis / transformation
/ synthesis based on a deterministic plus stochastic de-
composition,” Ph.D. dissertation, Stanford University,
1989.

[73] J. O. Smith III, “Efficient simulation of the reed-bore
and bow-string mechanisms,” in Proc. ICMC, 1986,
pp. 275–280.

[74] ——, “Musical applications of digital waveguides,”
Center for Computer Research in Music and Acous-
tics, Music Department, Stanford University, Tech.
Rep. STAN-M-39, 1987.

[75] ——, “Waveguide filter tutorial,” in Proc. ICMC,
1987, pp. 9–16.

[76] ——, “Viewpoints on the History of Digital Synthesis
(keynote paper),” in Proc. ICMC, 1991.

[77] ——, “Waveguide simulation of non-cylindrical
acoustic tubes,” in Proc. ICMC, 1991, pp. 304–307.

[78] J. O. Smith III and P. R. Cook, “The second-order dig-
ital waveguide oscillator,” in Proc. ICMC, 1992.

[79] K. Steiglitz and P. Lansky, “Synthesis of timbral fam-
ilies by warped linear prediction,” Comput. Music J.,
vol. 5, no. 3, pp. 45–49, 1981.

[80] D. Stowell and M. Plumbley, “Adaptive whitening for
improved real-time audio onset detection,” in Proc.
ICMC, 2007.

[81] G. Strobl and E. Gerhard, “Sound texture modeling: A
survey,” in Proc. Sound Music Computing Conf., 2006.

[82] B. L. Sturm, C. Roads, A. McLeran, and J. J. Shynk,

“Analysis, visualization, and transformation of au-
dio signals using dictionary-based methods,” in Proc.
ICMC, 2008.

[83] T. Takala and J. Hahn, “Sound rendering,” in Proc.
ACM SIGGRAPH, 1992, pp. 211–220.

[84] T. Tolonen, V. Välimäki, and M. Karjalainen, “Eval-
uation of modern sound synthesis methods,” Lab-
oratory of Acoustics and Audio Signal Processing,
Helsinki University of Technology, Espoo, Finland,
Tech. Rep. 48, 1998.

[85] B. Truax, “Chaotic non-linear systems and digital syn-
thesis: An exploratory study,” in Proc. ICMC, 1990,
pp. 100–103.

[86] ——, “Composing with real-time granular sound,”
Persp. New Music, vol. 28, no. 2, 1990.

[87] D. Trueman and R. L. DuBois, “PeRColate: A col-
lection of synthesis, signal processing, and image pro-
cessing objects for Max/MSP,” [Software] http://www.
music.columbia.edu/PeRColate/, retrieved 4 February
2009.

[88] G. Tzanetakis and P. R. Cook, “MARSYAS: A frame-
work for audio analysis,” Org. Sound, vol. 4, no. 3,
2000.

[89] ——, “Musical genre classification of audio signals,”
IEEE T. Speech Audio Proc., vol. 10, no. 5, pp. 293–
302, 2002.

[90] K. van den Doel, P. G. Kry, and D. K. Pai, “FO-
LEYAUTOMATIC: Physically-based sound effects for
interactive simulation and animation,” in Proc. ACM
SIGGRAPH, 2001.

[91] S. A. Van Duyne and J. O. Smith III, “The 2-D digital
waveguide mesh,” in IEEE Workshop App. Sig. Proc.
Audio Acoust., 1993.

[92] ——, “The 3D tetrahedral digital waveguide mesh
with musical applications,” in Proc. ICMC, 1996.

[93] B. L. Vercoe, W. G. Gardner, and E. D. Scheirer,
“Structured audio: Creation, transmission, and ren-
dering of parametric sound representations,” in Proc.
IEEE, vol. 86, no. 5, 1998, pp. 922–940.

[94] T. S. Verma and T. H. Meng, “An analysis/synthesis
tool for transient signals that allows a flexible
sines+transients+noise model for audio,” in Proc.
IEEE ICASSP, 1998, pp. 12–15.

[95] G. Wang and P. R. Cook, “ChucK: A concurrent, on-
the-fly, audio programming language,” in Proc. ICMC,
2003, pp. 219–226.

[96] G. Widmer, D. Rocchesso, V. Välimäki, C. Erkut,
F. Gouyon, D. Pressnitzer, H. Penttinen, P. Polotti,
and G. Volpe, “Sound and music computing: Re-
search trends and some key issues,” J. New Music Res.,
vol. 36, no. 3, pp. 169–184, 2007.

[97] M. Wright, A. Chaudhary, A. Freed, S. Khoury, and
D. Wessel, “Audio applications of the Sound Descrip-
tion Interchange Format standard,” in Audio Eng. Soc.
Conv., 1999.

[98] W. S. Yeo and J. Berger, “Application of image sonifi-
cation methods to music,” in Proc. ICMC, 2005.

[99] X. Zhu and L. Wyse, “Sound texture modeling and
time-frequency LPC,” in Proc. DAFx, 2004, pp. 345–
349.

http://www.music.columbia.edu/PeRColate/
http://www.music.columbia.edu/PeRColate/

	1 Introduction
	2 Abstract Synthesis Algorithms
	3 Synthesis from Scratch
	4 Synthesis from Existing Sounds
	4.1 Concatenative Techniques
	4.2 Additive Synthesis
	4.3 Subtractive Synthesis and Other Techniques

	5 Analysis not for Synthesis
	6 Discussion
	7 A Concluding Example
	8 References

