
Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx’06), Montreal, Canada, September 18-20, 2006

TAPESTREA: SOUND SCENE MODELING BY EXAMPLE

Ananya Misra, Perry R. Cook†, Ge Wang

Department of Computer Science (†also Music)
Princeton University, Princeton, USA

{amisra, prc, gewang}@cs.princeton.edu

ABSTRACT

A sound scene can be defined as any “environmental” sound that
has a consistent background texture, with one or more potentially
recurring foreground events. We describe a data-driven frame-
work for analyzing, transforming, and synthesizing high-quality
sound scenes, with flexible control over the various components
that make up the synthesized sound. Given one or more sound
scenes, our system provides well-defined means to: (1) identify
points of interest in the sound and extract them into reusable tem-
plates, (2) transform sound components independently of the back-
ground and/or other events, (3) continually re-synthesizethe back-
ground texture in a perceptually convincing manner, and (4)con-
trollably place event templates over the background, varying key
parameters such as density, periodicity, relative loudness, and spa-
tial positioning of the components. Our main contributionsin-
clude: techniques and paradigms for template selection andextrac-
tion, independent sound transformation and flexible re-synthesis;
extensions to a wavelet-based background analysis/synthesis; and
user interfaces to facilitate the various phases in our approach.
Given this framework, it is possible to completely transform an
existing sound scene, dynamically generate sound scenes ofun-
limited length, and construct new sound scenes by combiningele-
ments from different sound scenes. Url: http://taps.cs.princeton.edu

1. INTRODUCTION

Many sound synthesis techniques focus on generating foreground
sounds, which by themselves do not generally give a listenera
strong sense of being in a real-world environment. This paper in-
troduces techniques and paradigms for working with the totality of
foreground and background sounds that compose a sound scene.

Sound scene modeling by example is the creation of percep-
tually convincing sound scenes based on a set of existing sounds.
The generated sound should be arbitrarily close to or different from
the original sounds, based on the user’s intention. Existing meth-
ods that deal with pre-recorded sound do not provide suitable anal-
ysis and synthesis techniques for a sound scene to be composed
from selected components of different existing sounds. Naive ap-
proaches such as repeatedly playing or combining raw segments
of original recordings do not sound convincing, while more com-
plex synthesis methods lack flexibility both in creating scenes and
in the amount of user control needed.

Given one or more existing sound scenes, our task is to gener-
ate from these any amount of perceptually convincing sound that
can be parametrically controlled to fit the user’s specifications.
One of our goals is to provide a flexible tool for easily model-
ing and generating sound scenes for entertainment (movies,TV,
and games), Virtual and Augmented Reality, and art projectssuch

as live performances and installations. Towards this aim, we in-
troduce TAPESTREA: Techniques and Paradigms for Expressive
Synthesis, Transformation and Rendering of EnvironmentalAu-
dio. Our approach is based on the notion that sound scenes are
composed of events and background sound, which are best mod-
eled separately. We separate a sound scene into the following com-
ponents: (1)Deterministic events: composed of highly sinusoidal
components, often perceived as pitched events, such as a bird’s
chirp or a baby’s cry; (2)Transient events: brief non-sinusoidal
events, such as footsteps; (3)Stochastic background: the “din” or
residue remaining after the removal of deterministic and transient
components, such as wind, ocean waves, or street noise.

TAPESTREA analyzes and synthesizes each component sepa-
rately, using algorithms suitable to the component type. Itapplies
spectral modeling [1] to extract deterministic events, andtime-
domain analysis to detect transient events. Each event can then
be transformed and synthesized individually. The stochastic back-
ground is obtained by removing deterministic and transientevents
from the given sound and filling in the holes left by transientre-
moval; background is then dynamically generated using an im-
proved wavelet tree learning algorithm [2].

TAPESTREA is distinct from other sound analysis and syn-
thesis methods in that it allows users to: (1) point at a soundor a
part of a sound, extract it, and request more or less of it in the final
scene, (2) transform that sound independently of the background,
(3) flexibly control important parameters of the synthesis,such as
density, periodicity, relative gain, and spatial positioning of the
components (4) construct novel sounds in a well-defined manner.

The rest of the paper is structured as follows: In Section 2
we describe related work. Section 3 provides an overview of our
approach along with an example highlighting how it can be used.
Section 4 describes the analysis stage of our framework, section
5 describes the possible transformations on events, and section 6
describes the synthesis phase. Section 7 provides details about our
user interface and section 8 summarizes results and contributions.
Section 9 describes our conclusions and directions for future work.

2. RELATED WORK

Related work includes the following methods for sound analysis
and synthesis, and tools for sound production.

2.1. Simulated and Model-based Foreground Sounds

Simulation and model-based sound synthesis techniques arebased
on physical models of the objects, the world, and/or the interac-
tions between these [3]. Physically based models have been used

DAFX-1

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx’06), Montreal, Canada, September 18-20, 2006

to generate foreground sounds caused by object interactions, in-
cluding walking sounds [4], sounds caused by the motion of solid
objects [5], complex sounds due to individual objects and gestures
[6], and contact sounds [7] such as colliding, rolling, and sliding.

2.2. Sound Textures

A sound texture can be described as a sound with structural ele-
ments that repeat over time, but with some randomness. The sound
of rain falling, leaves rustling in the wind, or applause areexam-
ples of sound textures. Textures often form a large part of the
background of sound scenes.

Athineos and Ellis [8] modeled sound textures composed of
very brief granular events known asmicro-transients, such as fire
crackling or soda being poured out of a bottle. Zhu and Wyse
[9] extended their technique to separate the foreground transient
sequence from the background din in the source texture and resyn-
thesized these separately. Both these methods are effective on tex-
tures that primarily contain micro-transients, but do not general-
ize well to other sounds. For instance, the foreground-background
separation misses spectral foreground events, as it does not take
frequency into account while identifying events.

Miner and Caudell [10] used wavelets to decompose, mod-
ify, and re-synthesize sound textures, concentrating on the percep-
tual effects of various transformations. Dubnov et. al. [2]also
used a wavelet decomposition to analyze and generate more ofa
sound texture. Their method works well for sounds that are mostly
stochastic or have very brief pitched portions. However, sounds
with continuous components, such as a formula-one racecar en-
gine, sometimes get chopped up, while rhythmic sounds may lose
their rhythm during synthesis. The stochastic model is alsonot
suitable for sounds with many sinusoidal components.

In general, these existing approaches work only for mostly
stochastic sounds and do not allow flexible control over the output—
either the entire texture is transformed or segments are shuffled and
concatenated. Hence these methods are insufficient for sounds that
have various foreground events and background playing simulta-
neously. Our approach overcomes these limitations by isolating
and removing pitched sounds, performing modified wavelet tree
learning [2] on the remaining stochastic part, and re-inserting the
extracted components afterwards. We separate the pitched compo-
nents from the sound texture using spectral modeling.

2.3. Spectral Modeling

Spectral modeling [1] extends the original sinusoidal modeling al-
gorithm [11] by posing the concept of “sines plus noise,” based on
the notion that some components of sound fit a sinusoidal model
while others are better modeled by spectrally shaped noise.While
Serra and Smith [1] initially applied this to musical instrument
sounds, we use it to extractdeterministic events from any recorded
sound scene. Sinuosoidal modeling also enables modification of
the original sound before re-synthesis, for instance by pitch-shifting
and time-stretching. Other related work on spectral analysis in-
cludes alternatives to the Fourier transform for estimating the spec-
tra of specific kinds of signals [12, 13].

Existing tools for spectral analysis and re-synthesis, such as
SPEAR [14] and the CLAM library [15], allow high-level sinu-
soidal analysis, transformations and re-synthesis, but donot offer
the level of parametric control over these stages suitable for ana-
lyzing and creating sound scenes. Further, they lack a framework
for processing transients and stochastic background components.

2.4. Sound Editors

Current tools for commercial or home audio production include a
range of sound editors. Free or inexpensive commercially avail-
able software such as Audacity and GoldWave perform simple au-
dio production tasks. Midline audio editing systems, including
Peak, Logic, and Cubase, are geared towards music production
and often offer real-time MIDI sequencing capability. At the high
end are digital audio production hardware/software systems such
as Pro Tools, geared towards commercial sound production. Most
of these products support Virtual Studio Technology (VST) plug-
ins that perform synthesis algorithms and apply effects such as
reverb. However, none of them provides one real-time, extensible,
integrated analysis-transformation-synthesis workspace.

3. EXAMPLE AND OVERVIEW OF OUR APPROACH

The TAPESTREA system starts by loading a 5–15 seconds or
longer existing sound scene, such as the sound of a city street,
seagulls by the ocean or children playing in a park. Sound events in
the park scene, may include (1) children yelling, (2) a ball bounc-
ing, and (3) geese honking in a nearby pond. The background
texture might consist of the general din of the surroundings. No a
priori knowledge of the existing sound is needed; users can inter-
actively direct its operation for specific results.

C o m p o n e n t S e p a r a t i o nP r e �p r o c e s s i n g
D e t e r m i n i s t i cE v e n t s S t o c h a s t i cB a c k g r o u n dT r a n s i e n tE v e n t s

P o s t �p r o c e s s i n g
S p e c t r a lM a n i p u l a t i o n S t o c h a s t i cP r o p e r t i e sT e m p o r a l /S p a t i a lP o s i t i o n i n g

S i n u s o i d a lR e s y n t h e s i s W a v e l e t T r e eS y n t h e s i sE v e n tP o s i t i o n i n g

U s e rI n t e r a c t i o nI n p u t S o u n d

T e x t u r eT e x t u r eT e x t u r eO u t p u t S c e n e

T r a n s f o r m a t i o n s
S y n t h e s i s

Figure 1: Stages in our pipeline: (1) preprocessing, (2) analysis,
(3) transformation, (4) synthesis

Figure 1 depicts the phases in the TAPESTREA pipeline. The
existing sound scene first undergoes a basic preprocessing phase

DAFX-2

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx’06), Montreal, Canada, September 18-20, 2006

involving sample-rate/data-depth conversion as needed, channel
information, DC blocking and data normalization. Next, it passes
through the analysis phase, where the user extracts deterministic
(children yelling, geese honking), transient (ball bouncing) and
stochastic background (general din) components by specifying anal-
ysis parameters. Each component can be played back separately
and stored as a template for future use. For example, one bounce
of the ball can be stored as a transient template while individual
yells can be saved as deterministic event templates. In the trans-
formation and synthesis phase, the system or user parametrically
specifies how to construct the output sound scene. Transforma-
tions are applied to individual templates and these templates are
combined in specified ways to generate a complete sound scene.
For instance, the output sound scene can consist of a repeatedly
bouncing ball and many children yelling at different pitches and
times over a continuous general din, to simulate a children’s game
with enthusiastic spectators in a park without geese. The output
sound can also include templates from other existing sound scenes,
such as a referee’s whistle. The synthesized sound scene canbe
written to a file or played continuously in real-time for as long
as needed. TAPESTREA also includes a graphical user interface
for interactive control of the analysis, transformation and synthesis
parameters. The following sections provide more in-depth infor-
mation on the processing phases and the user interface.

4. EVENT IDENTIFICATION AND ISOLATION

The first step in our framework is to identify and separate fore-
ground events from background noise. Foreground events areparts
of the scene perceived as distinct occurrences, and includeboth
deterministic events (the sinusoidal or pitched components of a
sound) andtransient events (brief bursts of stochastic energy). Re-
moving these leaves us with thestochastic background.

4.1. Sinusoidal Modeling

Deterministic events are identified through sinusoidal analysis based
on the spectral modeling framework. The input sound scene isread
in as possibly overlapping frames, each of which is transformed
into the frequency domain using the FFT and processed separately.
The maximum and average magnitudes of the spectral frame are
computed and stored. The following steps are then repeated until
either a specified maximum number (N) of peaks have been lo-
cated or no more peaks are present: (1) The maximum-magnitude
bin in the frame, within the specified frequency range, is located.
(2) If the ratio of its magnitude to the average magnitude of the
frame is below a specified threshold, it is assumed to be noiseand
we deduce that no more peaks are present. (3) If its magnitude
is above a specified absolute threshold, it is added as a sinusoidal
peak and the bins it covered are zeroed out in the analysis frame.

T i m e (s e c)Freq uenc y(H z) 0 0 . 5 1 1 . 5 2 2 . 5 305 0 0 01 0 0 0 01 5 0 0 02 0 0 0 0 T i m e (s e c)Frequency(H z) 0 0 . 5 1 1 . 5 2 2 . 5 305 0 0 01 0 0 0 01 5 0 0 02 0 0 0 0T i m e (s e c)Frequency(H z) 0 0 . 5 1 1 . 5 2 2 . 505 0 0 01 0 0 0 01 5 0 0 02 0 0 0 0 t i m e t i m e t i m ef requency f requency f requency
Figure 2: Separating sinusoidal tracks from stochastic residue: (a)
original sound; (b) sinusoidal tracks; (c) residue

All the sinusoidal peaks and FFT frames can also be precom-

puted and stored. All peaks in a frame are found by locating bins
where the derivative of the magnitude changes from positiveto
negative. The peaks for each frame are stored in decreasing magni-
tude order. At run-time, the top N peaks that satisfy any frequency
and threshold bounds are selected per frame for peak matching.

Once the top N peaks in all the frames have been collected,
peaks are matched from frame to frame if they occur at sufficiently
similar frequencies. Over time this yieldstracks of peaks lasting
across frames. The matching and updating of tracks takes place
as follows: (1) Each existing track from previous frames selects a
current frame peak closest to it in frequency. If the difference in
frequency is above a specified threshold, that track is dormant and
the selected peak remains unmatched. (2) All unmatched peaks
are added as new tracks, and all existing tracks that have notfound
a continuation are removed if they have remained dormant fora
specified number of frames. (3) Tracks that continue across aspec-
ified minimum number of frames are retained.

Finally, TAPESTREA can parametrically group related tracks
[16, 17] to identify events. A track is judged to belong in an ex-
isting group if it has a minimum specified time-overlap with the
group and either: (1) its frequency is harmonically relatedto that
of a track in the group, (2) its frequency and amplitude change pro-
portionally to the group’s average frequency and amplitude, or (3)
it shares common onset and offset times with the group average.
If a track fits in multiple groups, these groups are merged. While
the grouping could benefit from a more sophisticated algorithm
or machine learning, it may be fine-tuned for specific sounds by
manipulating error thresholds for each grouping category.Groups
that last over a specified minimum time span are considered de-
terministic events. If grouping is not selected, all the tracks found
are together considered a single event. Each deterministicevent
is defined a list of sinusoidal tracks, with a history of each track’s
frequency, phase and magnitude, and onset and completion times.

The residue, or the sound with deterministic components re-
moved, is extracted after the sinusoidal tracks have been identi-
fied. TAPESTREA eliminates peaks in a sinusoidal track from the
corresponding spectral frame by smoothing down the magnitudes
of the bins beneath the peak. It also randomizes the phase in these
bins. Figure 2 shows sinusoidal separation results.

4.2. Transient Detection and Separation

Transients are brief stochastic sounds with high energy. While a
sinusoidal track looks like a near-horizontal line on a spectrogram,
a transient appears as a vertical line, representing the simultane-
ous presence of information at many frequencies. Transients are
usually detected in the time domain by observing changes in sig-
nal energy over time [18, 19]. TAPESTREA processes the entire
sound using a non-linear one-pole envelope follower filter with a
sharp attack and gradual decay to detect sudden increases inen-
ergy. Points where the ratio of the envelope’s derivative tothe av-
erage frame energy is above a user-specified threshold mark tran-
sient onsets. A transient’s length is also user-specified and can
thus include any amount of the decay. Other real-time analysis pa-
rameters include the filter attack and decay coefficients, and aging
amount in computing average frame energy. Transient events, be-
ing brief and noisy, are represented as raw sound clips, although
they can also be modeled by peak picking in the time domain [18].

Detected transients are removed, and the resulting “holes”are
filled by applying wavelet tree resynthesis [2]. The nearesttransient-
free segments before and after a transient event are combined to es-

DAFX-3

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx’06), Montreal, Canada, September 18-20, 2006

timate the background that should replace it. Wavelet tree learning
generates more of this background, which is overlap-added into
the original sound to replace the transient. The residue from the
sinusoidal analysis, with transients removed in this way, is saved
to file and used for stochastic background generation in the syn-
thesis phase. Figure 3 demonstrates the hole-filling.

T i m e (s e c)F requenc y(H z) 0 1 2 3 4 5 6 7 805 0 0 01 0 0 0 01 5 0 0 02 0 0 0 0T i m e (s e c)F requenc y(H z) 0 1 2 3 4 5 6 7 805 0 0 01 0 0 0 01 5 0 0 02 0 0 0 0 T i m e (s e c)F requenc y(H z) 0 1 2 3 4 5 6 7 805 0 0 01 0 0 0 01 5 0 0 02 0 0 0 0t i m e t i m e t i m ef requency f requency f requency
Figure 3: Transient removal and hole filling: (a) fireworks with
pop (at 7.2 sec); (b) fireworks with pop removed; (c) fireworks
with hole filled

5. TRANSFORMATIONS

We now havedeterministic events isolated in time and frequency
from the background,transient events, andstochastic background
texture. Output sound scenes are parametrically constructed from
these templates. The parametric model lets each transformation be
applied to each component independently of others.

5.1. Event Transformations

By stretching or compressing spectral data, we can raise or lower
the frequency content of a sound without affecting its duration.
For deterministic events with sinusoidal tracks, TAPESTREA lin-
early scales the frequency at each point in each track, giving high
fidelity frequency warping for almost any factor (limited byour
range of hearing). For transients, it uses a standard phase vocoder
[20] to similarly scale the frequency for each frame.

The track-based representation of deterministic events allows
us to robustly change theduration of each track by almost any
factor without producing artifacts, by scaling the time values in the
time-to-frequency trajectories of their tracks. Both time-stretching
and frequency-warping can take place in real-time for determinis-
tic events. Time-stretching for transients once again usesa phase
vocoder to stretch or shorten the temporal overlap between frames.

TAPESTREA offers control over thetemporal placement of
an individual event, either explicitly or using a probability distri-
bution for repeating events. Explicitly, an event instancecan be
placed on a timeline at a specified onset time. The timeline may
also include other event instances and background sound. Repeat-
ing events can be defined by a mean event density and desired
repetition periodicity, and generated according to these parameters
by a Gaussian or other distribution.

5.2. Stochastic Background Transformations

It is possible to interactively control the similarity between an
extracted background and the synthesized background generated
from its template. The similarity or randomness is governedby
the wavelet tree learning (Section 6.2) parameters. Also, the gen-
erated background can play for any arbitrary amount of time.

6. SYNTHESIS

TAPESTREA synthesizes a sound scene following the specified
transformations. The background component and the events are
synthesized separately and combined to produce the final scene.
Each component can also be heard in isolation so that a user can
determine its role in the final scene. Although we discuss trans-
formation and synthesis in separate sections for clarity, these two
aspects are closely related. For example, components can betrans-
formed in certain ways even while they are being synthesized.

6.1. Event Synthesis

Deterministic events are synthesized from their defining tracks with
sinusoidal re-synthesis. The system linearly interpolates frequency
and magnitude between consecutive frames before computingthe
time-domain sound from these. Transient events are directly played
back or, if a frequency-warping or time-stretching factor is speci-
fied, analyzed and synthesized through a phase vocoder.

6.2. Stochastic Background Generation

The background is generated using an extension of the wavelet tree
learning algorithm by Dubnov et. al. [2]. The extracted stochas-
tic background is decomposed into a wavelet tree (Daubechies, 5
vanishing moments), where each node represents a wavelet coeffi-
cient. A new wavelet tree is learned, with nodes selected from the
original tree by their context, within a specified randomness range.

We added the option of incorporating randomness into the first
step of the learning, and modified the amount of context used (‘k’)
to depend on the node’s depth. We also found that we can avoid
learning the coefficients at the highest resolutions, without percep-
tually altering the results. Since the wavelet tree is binary, learn-
ing at the highest levels takes longer, but randomizes mainly high-
frequency information. The optimization let us build a real-time
version of wavelet tree learning, with interactive controlover the
learning parameters. The wavelet tree learning also works better
with the separated stochastic background as input since thehar-
monic events it would otherwise garble have been removed.

6.3. Putting It All Together

To construct a sound scene, extracted background and eventsare
combined to the user’s preference. A scene of a specified length
can be generated by placing templates on a timeline of the desired
length. Infinitely long sound scenes can also be generated and
modified on-the-fly. The improved wavelet tree algorithm sythe-
sizes unlimited background texture, while event templatescan be
temporally placed against the background either with fine control
or in an automated manner (see Section 5.1).

This framework adapts to many techniques for synthesizing
the final sound. A user may craft a sound scene by listening to and
adjusting the components separately, based on how they sound as
a group or individually. The combined sound can then be simi-
larly sculpted. On the other hand, the synthesis can also be driven
from a game or animation algorithm that specifies transformations
according to parameters drawn from the game or animation itself.

7. USER INTERFACE

The user interface (Figure 4) is separated into two phases: analy-
sis and synthesis. In the analysis stage, the user can load a sound

DAFX-4

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx’06), Montreal, Canada, September 18-20, 2006

file and view its waveform, frame-by-frame spectrum and spec-
trogram. These views allow the user to visually identify events
and perform analysis on appropriate time and frequency regions to
extract specific events. Time and frequency bounds for the anal-
ysis can be specified by adjusting range sliders in the waveform
and spectrum views or by selecting a rectangle in the spectro-
gram view. The frame-by-frame spectrum also shows the sinu-
soidal analysis threshold. Direct control over many other analysis
parameters (Section 4) is also available. Having adjusted the anal-
ysis parameters, the user starts analysis by clicking a button. The
extracted events are then played separately, along with a frame-
by-frame view of their spectrum (for deterministic events)or a
zoomed in view of their waveform (for transient events). The
stochastic background is similarly played and viewed, or loaded
for further analysis. An extracted event or background can be
saved as a template for use in the synthesis phase. The user may
then perform further analysis on the same source sound or a differ-
ent one, or move on to the synthesis phase.

(a) a n a l y s i s

(b) s y n t h e s i s

S p e c t r o g r a mi n t e r a c t iv e t i m ev s . f r e q u e n c yd i s p l a y / i n t e r f a c eC o n t r o l P a n e lF i n e C o n t r o lt e m p l a t e s p e c i f i c
W a v e f o r ms t a n d a r d t i m e 7d o m a i n d i s p l a yA n a l y s i s R e s u l t st e m p l a t e e x t r a c t i o n

T i m e l i n eI n t e r f a c et e m p l a t e s ,i n c l u d i n g o t h e rt i m e l i n e s c a nb e p l a c e d h e r e C o n t r o l P a n e lR e a l O t i m e c o n t r o lt e m p l a t e 7 s p e c i f i cp a r a m e t e r sT e m p l a t eL i b r a r yt e m p l a t e s i n c l u d ed e t e r m i n i s t i c a n dt r a n s i e n t e v e n t s ,s t o c h a s t i cb a c k g r o u n d s ,l o o p s , t i m e l i n e s ,s c r i p t s , e t c .
Figure 4: Screen shots of user interface.

The synthesis stage of the interface offers a framework for
applying transformations and synthesizing the resulting sounds.
Templates saved from the analysis stage are available in thesyn-
thesis stage for listening, transforming, and placing in a sound
scene. Templates include the following types: (1)deterministic
events, (2) transient events, (3) stochastic background, (4) loops,
and (5)timelines. The first three are imported directly from the
analysis results, while loops and timelines are as described in Sec-
tion 5.1. Any event can be saved as a loop, with parameters spec-
ifying how often it repeats and how periodic the repetition is. In-
dividual event instances within a loop can also be randomly trans-

formed within a controllable range, so that every iterationof the
loop sounds slightly different. This is useful in generating ‘crowd’
sounds, such as a flock of birds constructed from a single extracted
chirp, or many people from a single voice. While loops parametri-
cally repeat a single event, timelines control the explicittemporal
placement of any number of components for a specified duration.
Any existing template can be dragged on to a timeline; its location
on the timeline determines when it is synthesized. When a timeline
is played, each template on it is synthesized at the appropriate time
step and played for its duration or until the timeline ends. It is also
possible to place timelines within timelines, to capture details of
a sound scene at different temporal resolutions. Any synthesized
sound scene can be written to file while it plays, or play forever.

8. RESULTS AND CONTRIBUTIONS

Sample results can be heard at http://taps.cs.princeton.edu.
Our main contributions comprise of the approach and frame-

work for analysis, transformation, and synthesis of sound scenes.
In particular, they are (1) techniques and paradigms for interactive
selection and extraction of templates from a sound scene, (2) tech-
niques for parametrically transforming components independently
of each other, (3) a framework for flexible resynthesis of events
and synthesis of novel sound scenes, (4) an interface to facilitate
each analysis and synthesis task. Furthermore, we have refined
several of the core algorithms employed in our system, as follows.

Firstly, we extend the wavelet tree algorithm to continually
resynthesize the background component, by speeding up the learn-
ing. Results show a 4x speedup in total running time between the
original algorithm (15 levels) and our modified version (stopping
at 9 levels), for a 1 minute 58 second sound clip to be generated
from an 18 second clip sampled at 11 kHz.

Secondly, we refine the sinusoidal extraction process by let-
ting users parametrically extract specific events. The datastruc-
tures for grouping and storing sinusoidal tracks as objectsare also
a first step towards object classification and computationalaudi-
tory scene analysis [21].

Thirdly, we use wavelet tree learning to fill in the gap left by
transient removal (Section 4.2). A clear sonic difference can be
discerned between attenuating the transient segment to thenoise
floor versus automatically automatically replacing it witha stochas-
tic sound clip produced by wavelet tree learning.

On the whole, TAPESTREA simplifies the creation of com-
plex sound scenes from existing ones. It can extract sound compo-
nents from complex sounds, synthesize a complete sound scene in
real-time with parametric control, leverage parametric sinusoidal
modeling to transform deterministic components on a largerscale
than other tools, and synthesize unlimited, non-repeatingback-
ground. Our framework is, to our knowledge, the first to provide
a comprehensive approach for extracting/ transforming/ resynthe-
sizing the different component templates, first individually, then
into cohesive sound scenes.

9. CONCLUSION AND FUTURE WORK

We have described a framework for extracting specific parts of ex-
isting sound scenes and flexibly reusing these to create new sound
scenes of arbitrary length. Our framework allows users to inter-
actively highlight points of interest in the input sound, separating
it into well-defined components. This separation allows greater
control over the synthesized scene, letting elements from different

DAFX-5

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx’06), Montreal, Canada, September 18-20, 2006

sound scenes be transformed independently and combined. We
have also demonstrated an interactive paradigm for building new
sound scenes, which includes iterative refinement of components,
interactive previews of transformations, grouping, and placement
in time and space. Due to the separation, our system is effective in
analyzing and synthesizing many classes of sounds.

While our system has no fundamental restriction on the type
of input sound to analyze, there are some limitations. When two
events overlap in both time and frequency, it can be hard for the
analysis to distinguish between them. Also, when events have
strong deterministic as well as stochastic components, these com-
ponents get separated and may be difficult to regroup. Futurework
includes overcoming these limitations by (1) using more sophisti-
cated event tracking and grouping methods, and (2) extending the
idea of objects to include composite events with both determin-
istic and transient components. In addition, we plan to combine
machine learning techniques to classify events and to improve per-
formance without human assistance over time. We would also like
to extend the precomputing capacities of the system.

To sum up, our main contributions comprise the approach,
system, and interface for selective extraction, transformation, and
resynthesis of sound scenes. While there is plenty of scope for fu-
ture work, TAPESTREA makes it possible to create novel sound
scenes from existing sounds in a flexible and parametricallycon-
trolled manner, providing a new paradigm for both real-timeand
offline sound production.

10. ACKNOWLEDGEMENTS

We would like to thank members of the Princeton soundlab and
graphics group.

11. REFERENCES

[1] Xavier Serra,A System for Sound Analysis / Transformation
/ Synthesis based on a Deterministic plus Stochastic Decom-
position, Ph.D. thesis, Stanford University, 1989.

[2] Shlomo Dubnov, Ziv Bar-Joseph, Ran El-Yaniv, Dani
Lischinski, and Michael Werman, “Synthesizing Sound
Textures through Wavelet Tree Learning,”IEEE Computer
Graphics and Applications, vol. 22, no. 4, 2002.

[3] Perry R. Cook,Real Sound Synthesis for Interactive Appli-
cations, A. K. Peters, 2002.

[4] Perry R. Cook, “Modeling bill’s gait: Analysis and paramet-
ric synthesis of walking sounds,” inProc. Audio Engineer
Society 22nd Conference on Virtual, Synthetic and Entertain-
ment Audio, 2002.

[5] James O’Brien, Perry Cook, and Georg Essl, “Synthesiz-
ing Sounds from Physically Based Motion,” inProc. ACM
SIGGRAPH 2001, Los Angeles, USA, 2001.

[6] Davide Rocchesso, Roberto Bresin, and Mikael Fernstrm,
“Sounding Objects,”IEEE Multimedia, vol. 10, no. 2, 2003.

[7] Kees van den Doel, Paul G. Kry, and Dinesh K. Pai, “FO-
LEYAUTOMATIC: Physically-based Sound Effects for In-
teractive Simulation and Animation,” inProc. ACM SIG-
GRAPH 2001, Los Angeles, USA, 2001.

[8] Marios Athineos and Daniel P.W. Ellis, “Sound Texture
Modelling with Linear Prediction in Both Time and Fre-
quency Domains,” inProc. IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP-03),
2003.

[9] Xinglei Zhu and Lonce Wyse, “Sound Texture Modeling
and Time-Frequency LPC,” inProc. 7th International Con-
ference on Digital Audio Effects (DAFx-04), Naples, Italy,
2004.

[10] Nadine E. Miner and Thomas P. Caudell, “Using Wavelets
to Synthesize Stochastic-based Sounds for Immersive Virtual
Environments,” inProc. International Conference on Audi-
tory Display (ICAD-97), 1997.

[11] Robert J. McAulay and Thomas F. Quatieri, “Speech Anal-
ysis/Synthesis Based on a Sinusoidal Representation,”IEEE
Transactions on Acoustics, Speech, and Signal Processing,
vol. 34, no. 4, 1986.

[12] Yuan Qi, Thomas P. Minka, and Rosalind W. Picard,
“Bayesian spectrum estimation of unevenly sampled nonsta-
tionary data,” MIT Media Lab Technical Report Vismod-TR-
556, October 2002.

[13] Harvey D. Thornburg and Randal J. Leistikow, “Analysisand
Resynthesis of Quasi-Harmonic Sounds: An Iterative Filter-
bank Approach,” inProc. 6th International Conference on
Digital Audio Effects (DAFx-03), London, UK, 2003.

[14] Michael Klingbeil, “Software for Spectral Analysis, Edit-
ing, and Synthesis,” inProc. International Computer Music
Conference (ICMC-05), 2005, pp. 107–110.

[15] Xavier Amatriain and P. Arumi, “Developing Cross-platform
Audio and Music Applications with the CLAM Framework,”
in Proc. International Computer Music Conference (ICMC-
05), 2005.

[16] Daniel P. W. Ellis, “A Computer Implementation of Psy-
choacoustic Grouping Rules,” inProc. 12th International
Conference on Pattern Recognition, 1994.

[17] Kathy Melih and Ruben Gonzalez, “Source Segmentation for
Structured Audio,” inProc. IEEE International Conference
on Multimedia and Expo (II), 2000, pp. 811–814.

[18] Tony S Verma and Teresa H Meng, “An Analy-
sis/Synthesis Tool for Transient Signals that Allows a Flex-
ible Sines+Transients+Noise Model for Audio,” inProc.
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP-98), 1998, pp. 12–15.

[19] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris
Duxbury, Mike Davies, and Mark B. Sandler, “A Tutorial on
Onset Detection in Music Signals,”IEEE Transactions on
Speech and Audio Processing, vol. 13, no. 5, 2005.

[20] Mark B. Dolson, “The phase vocoder: A tutorial,”Computer
Music Journal, vol. 10, no. 4, pp. 14–27, 1986.

[21] Albert S. Bregman,Auditory Scene Analysis: The Perceptual
Organization of Sound, The MIT Press, 1990.

DAFX-6

