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ABSTRACT

A sound scene can be defined as any “environmental” sound thatS

has a consistent background texture, with one or more patignt
recurring foreground events. We describe a data-drivemdra
work for analyzing, transforming, and synthesizing higlality
sound scenes, with flexible control over the various comptne
that make up the synthesized sound. Given one or more soun
scenes, our system provides well-defined means to: (1)ifdent
points of interest in the sound and extract them into reestsoh-
plates, (2) transform sound components independentlyedfaick-
ground and/or other events, (3) continually re-synthetsiedack-
ground texture in a perceptually convincing manner, andc¢f)
trollably place event templates over the background, warkey
parameters such as density, periodicity, relative lousireasd spa-
tial positioning of the components. Our main contributions
clude: techniques and paradigms for template selectioesnalc-
tion, independent sound transformation and flexible retmgis;
extensions to a wavelet-based background analysis/sisttend
user interfaces to facilitate the various phases in our cgutr.
Given this framework, it is possible to completely trangfoan
existing sound scene, dynamically generate sound scenas- of
limited length, and construct new sound scenes by combeieg
ments from different sound scenes. Url: http://taps.@scpton.edu

1. INTRODUCTION
Many sound synthesis techniques focus on generating fowagr
sounds, which by themselves do not generally give a listaner
strong sense of being in a real-world environment. This pape
troduces techniques and paradigms for working with thditptat
foreground and background sounds that compose a sound scene
Sound scene modeling by example is the creation of percep-
tually convincing sound scenes based on a set of existingdsou
The generated sound should be arbitrarily close to or diffefrom
the original sounds, based on the user’s intention. Exjstieth-
ods that deal with pre-recorded sound do not provide s tail-

as live performances and installations. Towards this aim,mw
troduce TAPESTREA: Techniques and Paradigms for Expressiv
ynthesis, Transformation and Rendering of Environmeftal

dio. Our approach is based on the notion that sound scenes are
composed of events and background sound, which are best mod-
eled separately. We separate a sound scene into the foj @eim-

CIDonents: (1Deterministic events: composed of highly sinusoidal

components, often perceived as pitched events, such asl'a bir
chirp or a baby’s cry; (2)lransient events: brief non-sinusoidal
events, such as footsteps; @pchastic background: the “din” or
residue remaining after the removal of deterministic aadgient
components, such as wind, ocean waves, or street noise.

TAPESTREA analyzes and synthesizes each component sepa-
rately, using algorithms suitable to the component typapfilies
spectral modeling [1] to extract deterministic events, &nte-
domain analysis to detect transient events. Each eventhean t
be transformed and synthesized individually. The stoohasck-
ground is obtained by removing deterministic and transeahts
from the given sound and filling in the holes left by transiest
moval; background is then dynamically generated using an im
proved wavelet tree learning algorithm [2].

TAPESTREA is distinct from other sound analysis and syn-
thesis methods in that it allows users to: (1) point at a saural
part of a sound, extract it, and request more or less of iterfitral
scene, (2) transform that sound independently of the bacigt,

(3) flexibly control important parameters of the synthesigh as
density, periodicity, relative gain, and spatial positgnof the
components (4) construct novel sounds in a well-defined erann

The rest of the paper is structured as follows: In Section 2
we describe related work. Section 3 provides an overviewuof o
approach along with an example highlighting how it can beduse
Section 4 describes the analysis stage of our frameworkiosec
5 describes the possible transformations on events, atiorséc
describes the synthesis phase. Section 7 provides ddiails aur
user interface and section 8 summarizes results and catbrils.
Section 9 describes our conclusions and directions foréutork.

ysis and synthesis techniques for a sound scene to be cothpose

from selected components of different existing soundsvé&ap-
proaches such as repeatedly playing or combining raw ségmen
of original recordings do not sound convincing, while mooene
plex synthesis methods lack flexibility both in creatingreeeand

in the amount of user control needed.

2. RELATED WORK

Related work includes the following methods for sound asialy
and synthesis, and tools for sound production.

Given one or more existing sound scenes, our task is to gener-

ate from these any amount of perceptually convincing sobad t
can be parametrically controlled to fit the user's specifbcet
One of our goals is to provide a flexible tool for easily model-
ing and generating sound scenes for entertainment (moviés,
and games), Virtual and Augmented Reality, and art projgaatt
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2.1. Simulated and M odel-based Foreground Sounds

Simulation and model-based sound synthesis techniqudmaeel
on physical models of the objects, the world, and/or theramte
tions between these [3]. Physically based models have besh u
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to generate foreground sounds caused by object interaction
cluding walking sounds [4], sounds caused by the motion ki so
objects [5], complex sounds due to individual objects arlges
[6], and contact sounds [7] such as colliding, rolling, alidiisg.

2.2. Sound Textures

A sound texture can be described as a sound with structweal el
ments that repeat over time, but with some randomness. Timelso
of rain falling, leaves rustling in the wind, or applause exam-
ples of sound textures. Textures often form a large part ef th
background of sound scenes.

Athineos and Ellis [8] modeled sound textures composed of
very brief granular events known ascro-transients, such as fire
crackling or soda being poured out of a bottle. Zhu and Wyse
[9] extended their technique to separate the foregrountsieat
sequence from the background din in the source texture ayd-re
thesized these separately. Both these methods are effectiex-
tures that primarily contain micro-transients, but do neheral-
ize well to other sounds. For instance, the foreground-gpacind
separation misses spectral foreground events, as it dadske
frequency into account while identifying events.

Miner and Caudell [10] used wavelets to decompose, mod-
ify, and re-synthesize sound textures, concentrating empéncep-
tual effects of various transformations. Dubnov et. al. d&o
used a wavelet decomposition to analyze and generate mare of
sound texture. Their method works well for sounds that arstiyio
stochastic or have very brief pitched portions. Howeveunsis
with continuous components, such as a formula-one racecar e
gine, sometimes get chopped up, while rhythmic sounds ns&y lo
their rhythm during synthesis. The stochastic model is also
suitable for sounds with many sinusoidal components.

In general, these existing approaches work only for mostly
stochastic sounds and do not allow flexible control over thput—
either the entire texture is transformed or segments aféethand
concatenated. Hence these methods are insufficient fodsabat
have various foreground events and background playingl&mu
neously. Our approach overcomes these limitations bytisgla
and removing pitched sounds, performing modified waveks tr
learning [2] on the remaining stochastic part, and re-iirsgithe
extracted components afterwards. We separate the pitcinepaz
nents from the sound texture using spectral modeling.

2.3. Spectral Modeling

Spectral modeling [1] extends the original sinusoidal niodeal-
gorithm [11] by posing the concept of “sines plus noise, dzhsn
the notion that some components of sound fit a sinusoidal mode
while others are better modeled by spectrally shaped nditde
Serra and Smith [1] initially applied this to musical instrent
sounds, we use it to extragéter ministic events from any recorded
sound scene. Sinuosoidal modeling also enables modificafio
the original sound before re-synthesis, for instance mhpéhifting
and time-stretching. Other related work on spectral amalys
cludes alternatives to the Fourier transform for estinugtiie spec-
tra of specific kinds of signals [12, 13].

Existing tools for spectral analysis and re-synthesishag
SPEAR [14] and the CLAM library [15], allow high-level sinu-
soidal analysis, transformations and re-synthesis, butodffer
the level of parametric control over these stages suitablaria-
lyzing and creating sound scenes. Further, they lack a framke
for processing transients and stochastic background coemts.

2.4. Sound Editors

Current tools for commercial or home audio production idela
range of sound editors. Free or inexpensive commerciabiyl-av
able software such as Audacity and GoldWave perform simple a
dio production tasks. Midline audio editing systems, idahg
Peak, Logic, and Cubase, are geared towards music productio
and often offer real-time MIDI sequencing capability. Aethigh
end are digital audio production hardware/software systeuth
as Pro Tools, geared towards commercial sound productiast M
of these products support Virtual Studio Technology (VSITigp
ins that perform synthesis algorithms and apply effecth ac
reverb. However, none of them provides one real-time, e
integrated analysis-transformation-synthesis workspac

3. EXAMPLE AND OVERVIEW OF OUR APPROACH

The TAPESTREA system starts by loading a 5-15 seconds or
longer existing sound scene, such as the sound of a cityt,stree
seagulls by the ocean or children playing in a park. Soundteve

the park scene, may include (1) children yelling, (2) a batirc-

ing, and (3) geese honking in a nearby pond. The background
texture might consist of the general din of the surroundiigsa
priori knowledge of the existing sound is needed; users can inter-
actively direct its operation for specific results.
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Figure 1: Stages in our pipeline: (1) preprocessing, (2)yaig
(3) transformation, (4) synthesis

Figure 1 depicts the phases in the TAPESTREA pipeline. The
existing sound scene first undergoes a basic preprocessasg p
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involving sample-rate/data-depth conversion as needeahnel
information, DC blocking and data normalization. Next,dispes
through the analysis phase, where the user extracts deistimi
(children yelling, geese honking), transient (ball bouggiand
stochastic background (general din) components by spegiénal-

ysis parameters. Each component can be played back séparate

puted and stored. All peaks in a frame are found by locating bi

where the derivative of the magnitude changes from posttive

negative. The peaks for each frame are stored in decreasiggim

tude order. At run-time, the top N peaks that satisfy anydesgy

and threshold bounds are selected per frame for peak mgtchin
Once the top N peaks in all the frames have been collected,

and stored as a template for future use. For example, onecboun peaks are matched from frame to frame if they occur at sufiilgie

of the ball can be stored as a transient template while iddali
yells can be saved as deterministic event templates. Inrans-t
formation and synthesis phase, the system or user paraaiitri
specifies how to construct the output sound scene. Tranaform
tions are applied to individual templates and these teraplate

similar frequencies. Over time this yieltisacks of peaks lasting
across frames. The matching and updating of tracks takee pla
as follows: (1) Each existing track from previous frame&est a
current frame peak closest to it in frequency. If the differe in
frequency is above a specified threshold, that track is dorievad

combined in specified ways to generate a complete sound.scenethe selected peak remains unmatched. (2) All unmatchedspeak

For instance, the output sound scene can consist of a relpeate
bouncing ball and many children yelling at different pitstend
times over a continuous general din, to simulate a childrgame
with enthusiastic spectators in a park without geese. Thpgubu
sound can also include templates from other existing soceies,
such as a referee’s whistle. The synthesized sound scengecan
written to a file or played continuously in real-time for ando
as needed. TAPESTREA also includes a graphical user interfa
for interactive control of the analysis, transformatiod agnthesis
parameters. The following sections provide more in-deptari
mation on the processing phases and the user interface.

4. EVENT IDENTIFICATION AND ISOLATION

The first step in our framework is to identify and separatefor
ground events from background noise. Foreground eventaai®

of the scene perceived as distinct occurrences, and indlatte
deterministic events (the sinusoidal or pitched components of a
sound) andransient events (brief bursts of stochastic energy). Re-
moving these leaves us with temchastic background.

4.1. Sinusoidal Modeling

Deterministic events are identified through sinusoidalysmisbased
on the spectral modeling framework. The input sound scersai
in as possibly overlapping frames, each of which is tramséat
into the frequency domain using the FFT and processed depara

are added as new tracks, and all existing tracks that havieunad

a continuation are removed if they have remained dormané for
specified number of frames. (3) Tracks that continue acrepea
ified minimum number of frames are retained.

Finally, TAPESTREA can parametrically group related tsack
[16, 17] to identify events. A track is judged to belong in an e
isting group if it has a minimum specified time-overlap wilttet
group and either: (1) its frequency is harmonically reldtethat
of atrack in the group, (2) its frequency and amplitude clegng-
portionally to the group’s average frequency and amplitod€3)
it shares common onset and offset times with the group agerag
If a track fits in multiple groups, these groups are mergedil&Vh
the grouping could benefit from a more sophisticated allyorit
or machine learning, it may be fine-tuned for specific sounds b
manipulating error thresholds for each grouping categ@raups
that last over a specified minimum time span are considered de
terministic events. If grouping is not selected, all theksafound
are together considered a single event. Each determieigtiot
is defined a list of sinusoidal tracks, with a history of eaeltk’s
frequency, phase and magnitude, and onset and completies.ti

The residue, or the sound with deterministic components re-
moved, is extracted after the sinusoidal tracks have besmtiid
fied. TAPESTREA eliminates peaks in a sinusoidal track frben t
corresponding spectral frame by smoothing down the madgétu
of the bins beneath the peak. It also randomizes the phakese t
bins. Figure 2 shows sinusoidal separation results.

The maximum and average magnitudes of the spectral frame are

computed and stored. The following steps are then repeattd u

either a specified maximum number (N) of peaks have been lo-
cated or no more peaks are present: (1) The maximum-magnitud

bin in the frame, within the specified frequency range, isted.
(2) If the ratio of its magnitude to the average magnitudehef t
frame is below a specified threshold, it is assumed to be @wide

we deduce that no more peaks are present. (3) If its magnitude,

is above a specified absolute threshold, it is added as aogitalis
peak and the bins it covered are zeroed out in the analysigefra

frequency
i
frequency
frequency

time

time

Figure 2: Separating sinusoidal tracks from stochastidues (a)
original sound; (b) sinusoidal tracks; (c) residue

4.2. Transient Detection and Separation

Transients are brief stochastic sounds with high energyilé/éh
sinusoidal track looks like a near-horizontal line on a sqmeram,
a transient appears as a vertical line, representing theltsine-
ous presence of information at many frequencies. Trarsiame
usually detected in the time domain by observing change®in s
nal energy over time [18, 19]. TAPESTREA processes theentir
sound using a non-linear one-pole envelope follower filtéh &
sharp attack and gradual decay to detect sudden increases in
ergy. Points where the ratio of the envelope’s derivativeh&oav-
erage frame energy is above a user-specified threshold naark t
sient onsets. A transient’s length is also user-specifiet cam
thus include any amount of the decay. Other real-time arsahs
rameters include the filter attack and decay coefficient$ aging
amount in computing average frame energy. Transient eveets
ing brief and noisy, are represented as raw sound clipspwtin
they can also be modeled by peak picking in the time domaih [18
Detected transients are removed, and the resulting “hales”
filled by applying wavelet tree resynthesis [2]. The nearesisient-

All the sinusoidal peaks and FFT frames can also be precom- free segments before and after a transient event are codnioiles-
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timate the background that should replace it. Wavelet taming
generates more of this background, which is overlap-added i
the original sound to replace the transient. The residua fitoe
sinusoidal analysis, with transients removed in this wagaved
to file and used for stochastic background generation inyhe s
thesis phase. Figure 3 demonstrates the hole-filling.

frequency
frequency
requency

S N

Figure 3: Transient removal and hole filling: (a) fireworkstwi
pop (at 7.2 sec); (b) fireworks with pop removed; (c) fireworks

with hole filled

5. TRANSFORMATIONS

We now havedeterministic events isolated in time and frequency
from the backgroundyansient events, andstochastic background
texture. Output sound scenes are parametrically consttdotm
these templates. The parametric model lets each transiomizse
applied to each component independently of others.

5.1. Event Transformations

By stretching or compressing spectral data, we can raisenarl
the frequency content of a sound without affecting its duration.
For deterministic events with sinusoidal tracks, TAPESARIB-
early scales the frequency at each point in each track,givigh
fidelity frequency warping for almost any factor (limited loyr
range of hearing). For transients, it uses a standard ploaseler
[20] to similarly scale the frequency for each frame.

The track-based representation of deterministic evefdwsl
us to robustly change tha@uration of each track by almost any
factor without producing artifacts, by scaling the timeued in the
time-to-frequency trajectories of their tracks. Both tistestching
and frequency-warping can take place in real-time for deitas-
tic events. Time-stretching for transients once again aggsase
vocoder to stretch or shorten the temporal overlap betweenes.

TAPESTREA offers control over theemporal placement of
an individual event, either explicitly or using a probatyildistri-
bution for repeating events. Explicitly, an event instanee be
placed on a timeline at a specified onset time. The timeling ma
also include other event instances and background sounmtaRe

ing events can be defined by a mean event density and desireqhe

repetition periodicity, and generated according to thesarmeters
by a Gaussian or other distribution.

5.2. Stochastic Background Transformations

It is possible to interactively control the similarity betan an
extracted background and the synthesized background ajeder
from its template. The similarity or randomness is goverbgd
the wavelet tree learning (Section 6.2) parameters. Alsogen-
erated background can play for any arbitrary amount of time.

6. SYNTHESIS

TAPESTREA synthesizes a sound scene following the specified
transformations. The background component and the eveats a
synthesized separately and combined to produce the finaésce
Each component can also be heard in isolation so that a user ca
determine its role in the final scene. Although we discussstra
formation and synthesis in separate sections for clahigsé two
aspects are closely related. For example, components deamise
formed in certain ways even while they are being synthesized

6.1. Event Synthesis

Deterministic events are synthesized from their definiagts with
sinusoidal re-synthesis. The system linearly interpslfrfeguency
and magnitude between consecutive frames before compitiéng
time-domain sound from these. Transient events are djreletyed
back or, if a frequency-warping or time-stretching facespeci-
fied, analyzed and synthesized through a phase vocoder.

6.2. Stochastic Background Generation

The background is generated using an extension of the vidrexe
learning algorithm by Dubnov et. al. [2]. The extracted he®:
tic background is decomposed into a wavelet tree (Daubgchie
vanishing moments), where each node represents a wavefét co
cient. A new wavelet tree is learned, with nodes selectau fite
original tree by their context, within a specified randonsesge.
We added the option of incorporating randomness into thee firs
step of the learning, and modified the amount of context u&8d (
to depend on the node’s depth. We also found that we can avoid
learning the coefficients at the highest resolutions, witipercep-
tually altering the results. Since the wavelet tree is hinkarn-
ing at the highest levels takes longer, but randomizes mhigh-
frequency information. The optimization let us build a reaie
version of wavelet tree learning, with interactive contwgér the
learning parameters. The wavelet tree learning also woek®h
with the separated stochastic background as input sinchahe
monic events it would otherwise garble have been removed.

6.3. Putting It All Together

To construct a sound scene, extracted background and eaents
combined to the user’s preference. A scene of a specifiedeng
can be generated by placing templates on a timeline of thHeedes
length. Infinitely long sound scenes can also be generatédd an
modified on-the-fly. The improved wavelet tree algorithmhgyt
sizes unlimited background texture, while event templatesbe
temporally placed against the background either with fingrod

or in an automated manner (see Section 5.1).

This framework adapts to many techniques for synthesizing
final sound. A user may craft a sound scene by listeningdo a
adjusting the components separately, based on how they ssun

a group or individually. The combined sound can then be simi-
larly sculpted. On the other hand, the synthesis can alsoibend
from a game or animation algorithm that specifies transftiona
according to parameters drawn from the game or animatieH.its

7. USER INTERFACE

The user interface (Figure 4) is separated into two phasedy-a
sis and synthesis. In the analysis stage, the user can laathd s
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file and view its waveform, frame-by-frame spectrum and spec
trogram. These views allow the user to visually identify rege
and perform analysis on appropriate time and frequencypnsgo
extract specific events. Time and frequency bounds for thé an
ysis can be specified by adjusting range sliders in the wawvefo
and spectrum views or by selecting a rectangle in the spectro

gram view. The frame-by-frame spectrum also shows the sinu-

soidal analysis threshold. Direct control over many othreysis
parameters (Section 4) is also available. Having adjustedmal-
ysis parameters, the user starts analysis by clicking amufthe
extracted events are then played separately, along withraefr
by-frame view of their spectrum (for deterministic events)a
zoomed in view of their waveform (for transient events). The
stochastic background is similarly played and viewed, adéx
for further analysis. An extracted event or background can b

formed within a controllable range, so that every iteratidrihe
loop sounds slightly different. This is useful in genergticrowd’
sounds, such as a flock of birds constructed from a singlaebeil
chirp, or many people from a single voice. While loops paraime
cally repeat a single event, timelines control the expteihporal
placement of any number of components for a specified duratio
Any existing template can be dragged on to a timeline; itatiot
on the timeline determines when itis synthesized. When aliti@
is played, each template on it is synthesized at the apptedime
step and played for its duration or until the timeline entiss &lso
possible to place timelines within timelines, to capturéade of
a sound scene at different temporal resolutions. Any syithd
sound scene can be written to file while it plays, or play ferev

8. RESULTSAND CONTRIBUTIONS

saved as a template for use in the synthesis phase. The uger ma

then perform further analysis on the same source sound €fea di
ent one, or move on to the synthesis phase.
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domain display
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interactive time
vs. frequency
display / interface

Fine Control
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Figure 4: Screen shots of user interface.

The synthesis stage of the interface offers a framework for
applying transformations and synthesizing the resultiognss.
Templates saved from the analysis stage are available isytire
thesis stage for listening, transforming, and placing inansl
scene. Templates include the following types: d&erministic
events, (2) transient events, (3) stochastic background, (4) loops,
and (5)timelines. The first three are imported directly from the
analysis results, while loops and timelines are as destitb8ec-
tion 5.1. Any event can be saved as a loop, with parametets spe
ifying how often it repeats and how periodic the repetitisnlin-
dividual event instances within a loop can also be randoralys-

DAFX-

Sample results can be heard at http://taps.cs.princelion.e

Our main contributions comprise of the approach and frame-
work for analysis, transformation, and synthesis of sowehss.

In particular, they are (1) techniques and paradigms ferautive
selection and extraction of templates from a sound sceh&¢B-
niques for parametrically transforming components indejpatly

of each other, (3) a framework for flexible resynthesis ofnése
and synthesis of novel sound scenes, (4) an interface titdsei
each analysis and synthesis task. Furthermore, we havedefin
several of the core algorithms employed in our system, el

Firstly, we extend the wavelet tree algorithm to continpall
resynthesize the background component, by speeding updhe |
ing. Results show a 4x speedup in total running time betwieen t
original algorithm (15 levels) and our modified version fgiimg
at 9 levels), for a 1 minute 58 second sound clip to be gergrate
from an 18 second clip sampled at 11 kHz.

Secondly, we refine the sinusoidal extraction process by let
ting users parametrically extract specific events. The sfatec-
tures for grouping and storing sinusoidal tracks as obgaslso
a first step towards object classification and computatiandi-
tory scene analysis [21].

Thirdly, we use wavelet tree learning to fill in the gap left by
transient removal (Section 4.2). A clear sonic differenaa be
discerned between attenuating the transient segment tooike
floor versus automatically automatically replacing it watstochas-
tic sound clip produced by wavelet tree learning.

On the whole, TAPESTREA simplifies the creation of com-
plex sound scenes from existing ones. It can extract soumgpao
nents from complex sounds, synthesize a complete sound sten
real-time with parametric control, leverage parametnzisoidal
modeling to transform deterministic components on a lasgate
than other tools, and synthesize unlimited, non-repeatiack-
ground. Our framework is, to our knowledge, the first to pdevi
a comprehensive approach for extracting/ transformirgy/rre-
sizing the different component templates, first individyathen
into cohesive sound scenes.

9. CONCLUSION AND FUTURE WORK

We have described a framework for extracting specific pdres-0
isting sound scenes and flexibly reusing these to create oemds
scenes of arbitrary length. Our framework allows users terin
actively highlight points of interest in the input soundpagating
it into well-defined components. This separation allowsatge
control over the synthesized scene, letting elements fiiffiereint
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sound scenes be transformed independently and combined.

have also demonstrated an interactive paradigm for bujldew

sound scenes, which includes iterative refinement of coepsn
interactive previews of transformations, grouping, aretpment

in time and space. Due to the separation, our system is igffént
analyzing and synthesizing many classes of sounds.

We

(9]

While our system has no fundamental restriction on the type

of input sound to analyze, there are some limitations. When t
events overlap in both time and frequency, it can be hardher t

10]

analysis to distinguish between them. Also, when event& hav

strong deterministic as well as stochastic componentsethem-
ponents get separated and may be difficult to regroup. Futorie
includes overcoming these limitations by (1) using morehssip
cated event tracking and grouping methods, and (2) extgrttim

idea of objects to include composite events with both daterm
istic and transient components. In addition, we plan to damb

machine learning techniques to classify events and to inepper-

formance without human assistance over time. We would &eo |

to extend the precomputing capacities of the system.

(11]

(12]

To sum up, our main contributions comprise the approach,

system, and interface for selective extraction, transéion, and
resynthesis of sound scenes. While there is plenty of saofef

(13]

ture work, TAPESTREA makes it possible to create novel sound

scenes from existing sounds in a flexible and parametricalhy
trolled manner, providing a new paradigm for both real-tiamel
offline sound production.
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